首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The death and survival of neuronal cells are regulated by various signaling pathways during development of the brain and in neuronal diseases. Previously, we demonstrated that the neuronal adhesion molecule brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is involved in brain-derived neurotrophic factor (BDNF)-promoted neuronal cell survival. Here, we report the apoptosis-inducing effect of CD47/integrin-associated protein (IAP), the heterophilic binding partner of BIT/SHPS-1, on neuronal cells. We generated a recombinant adenovirus vector expressing a neuronal form of CD47/IAP, and found that the expression of CD47/IAP by infection with CD47/IAP adenovirus induced the death of cultured cerebral cortical neurons. The numbers of TdT-mediated biotin-dUTP nick-end labelling (TUNEL)-positive neurons and of cells displaying apoptotic nuclei increased by expression of CD47/IAP. Neuronal cell death was prevented by the addition of the broad-spectrum caspase inhibitor Z-VAD-fmk. Furthermore, we observed that co-expression of CD47/IAP with BIT/SHPS-1 enhanced neuronal cell death, and that BDNF prevented it. These results suggest that CD47/IAP is involved in a novel pathway which regulates caspase-dependent apoptosis of cultured cerebral cortical neurons. CD47/IAP-induced death of cultured cortical neurons may be regulated by the interaction of CD47/IAP with BIT/SHPS-1 and by BDNF.  相似文献   

2.
Little is known about the role of the integrin-associated protein (IAP, or CD47) in neuronal development and its function in the central nervous system. We investigated neuronal responses in IAP-overexpressing cortical neurons using a virus-gene transfer system. We found that dendritic outgrowth was significantly enhanced in IAP (form 4)-transfected neurons. Furthermore, synaptic proteins including synaptotagmin, syntaxin, synapsin I, and SNAP25 (25-kDa synaptosomal associated protein) were up-regulated. In accordance with this finding, the release of the excitatory transmitter glutamate and the frequencies of Ca2+ oscillations (glutamate-mediated synaptic transmission) were increased. Interestingly, the overexpression of IAP activated mitogen-activated protein kinase (MAPK), and this activation was required for the IAP-dependent biological effects. After down-regulation of the endogenous IAP by small interfering RNA, MAPK activity, synaptic protein levels, and glutamate release decreased. These observations suggest that the IAP plays important roles in dendritic outgrowth and synaptic transmission in developing cortical neurons through the activation of MAPK.  相似文献   

3.
Integrin-associated protein (IAP; CD47) is a thrombospondin receptor that forms a signaling complex with beta3 integrins resulting in enhanced alphavbeta3-dependent cell spreading and chemotaxis and, in platelets, alphaIIbbeta3-dependent spreading and aggregation. These actions of CD47 are all specifically abrogated by pertussis toxin treatment of cells. Here we report that CD47, its beta3 integrin partner, and Gi proteins form a stable, detergent-soluble complex that can be recovered by immunoprecipitation and affinity chromatography. Gialpha is released from this complex by treatment with GTP or AlF4. GTP and AlF4 also reduce the binding of CD47 to its agonist peptide (4N1K) derived from thrombospondin, indicating a direct association of CD47 with Gi. 4N1K peptide causes a rapid decrease in intraplatelet cyclic AMP levels, a Gi-dependent event necessary for aggregation. Finally, 4N1K stimulates the binding of GTPgamma35S to membranes from cells expressing IAP and alphavbeta3. This functional coupling of CD47 to heterotrimeric G proteins provides a mechanistic explanation for the biological effects of CD47 in a wide variety of systems.  相似文献   

4.
5.
Integrin-associated protein (IAP/CD47) is a receptor for the C-terminal cell binding domain of thrombospondin (TS). A peptide from the C-terminal cell binding domain, KRFYVVMWKK (4N1K) binds to IAP and stimulates the integrin-dependent cell functions, including platelet aggregation. We investigated the mechanism by which TS-bound IAP modulates the affinity of platelet integrin, alphaIIbbeta3. Platelet aggregation induced by 4N1K was not completely inhibited by energy depletion with sodium azide and 2-deoxy-d-glucose, although ADP or collagen-induced platelet response was completely inhibited. The binding of ligand-mimetic antibody PAC1 to alphaIIbbeta3 was also induced in the energy-depleted platelets. In the transfected Namalwa cells, 4N1K induced activation of the alphaIIbbeta3 with mutated beta3 (Ser-752 to Pro), which is a non-responsive form to inside-out signaling, as well as wild type alphaIIbbeta3. The truncated form of IAP with only the extracellular immunoglobulin-like (Ig) domain was sufficient for the activation of alphaIIbbeta3 in Chinese hamster ovary cells, although the IAP-mediated intracellular signaling was abolished, which was monitored by the absence of down-regulation of mitogen-activated protein kinase phosphorylation. Furthermore, the soluble recombinant Ig domain of IAP induced PAC1 binding to alphaIIbbeta3 on Chinese hamster ovary cells when added with 4N1K. Physical association between the soluble recombinant Ig domain of IAP and purified alphaIIbbeta3 was detected in the presence of 4N1K. These data indicate that the extracellular Ig domain of IAP, when bound to TS, interacts with alphaIIbbeta3 and can change alphaIIbbeta3 in a high affinity state without the requirement of intracellular signaling. This extracellular event would be a novel mechanism of affinity modulation of integrin.  相似文献   

6.
Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号