首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of adjuvant-induced pouch granuloma in genetically diabetic KK-CAy mice with hyperinsulinemia were investigated. Both the dose-response relationship and the time-course experiments showed that the wet weight of pouch granuloma in diabetic KK-CAy mice was lower than in ddY normal mice. Insulin treatment enhanced granuloma formation in KK-CAy mice, and it restored the suppressed DNA content in the granuloma tissue to the level in ddY mice. Although the DNA content was dose-dependently increased by insulin, the ratio of DNA content to granuloma weight was constant. In severely diabetic mice, the granuloma weight was not different from that in normoglycemic mice, despite significantly higher blood insulin levels and greater body weight. Insulin stimulated granuloma formation in severely diabetic KK-CAy mice only when higher doses (1 mg/kg) were given. This evidence suggests that suppression of granuloma formation in diabetic KK-CAy mice is due to insulin resistance and that restoration requires pharmacological doses of insulin.  相似文献   

2.
The cellular defects possibly responsible for diminished in vivo granuloma formation in diabetic Schistosoma mansoni-infected mice were investigated. Diabetic and control animals develop a similar degree of eosinophilia. Eosinophils obtained from diabetic mice also respond normally to the lymphokine eosinophil stimulation promoter (ESP). Lymphoid cells of chemically induced (streptozotocin) and mutation diabetic (db/db) mice, however, have a decreased capacity to produce/secrete ESP in response to soluble egg antigens of S. mansoni. Administration of insulin to diabetic mice is associated with a partial reversal of the decreased ability of their lymphoid cells to generate ESP. These findings show that defective cellular immunity in diabetic animals may be partially explained by the failure of their lymphocytes to produce the soluble mediators involved in recruitment of target cells.  相似文献   

3.
Chlorella, a type of unicellular fresh water algae, has been a popular foodstuff in Japan and Taiwan. Chlorella has been shown to produce hypoglycemic effects in alloxan-induced diabetic animals. However, there are no other reports of the effects of this substance in other diabetic animal models. Here we have used streptozocin (STZ)-induced diabetic mice to study the thypoglycemic effects of Chlorella. Diabetes was induced in ICR strain mice by the i.p. injection of STZ. Vehicle-treated ICR mice were used as normal control animals and glibenclamide was used as a positive drug control. The effects of Chlorella on basal blood glucose, exogenous insulin sensitivity test and plasma insulin levels were measured. In normal mice Chlorella produced a transient hypoglycemic effect at 90 min after acute administration; whereas glibenclamide produced a more sustained hypoglycemic effect between 90 min and 180 min after acute administration. Chlorella did not affect the basal blood glucose level in STZ mice. However, Chlorella enhanced and prolonged the hypoglycemic effects of injected insulin in STZ mice for a further 60 min compared to the normal vehicle-treated group. Plasma insulin levels were increased in normal mice after treatment with glibenclamide, whereas Chlorella had no such effect. The current results indicate that Chlorella enhances the hypoglycemic effects of exogenous insulin at a dose which does not produce hypoglycemia in STZ mice, suggesting that insulin sensitivity is increased in these mice.  相似文献   

4.
Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro.  相似文献   

5.
Adiponectin is an adipocyte-derived factor that plays pivotal roles in lipid and glucose metabolism in muscle and liver. The following two adiponectin receptor types were recently identified: AdipoR1 is abundantly expressed in muscle, whereas AdipoR2 is predominantly expressed in the liver. To clarify the regulation of adiponectin receptor gene expression in diabetic states, we examined mRNA levels of AdipoR1 in the muscles of diabetic animals by Northern blotting. The level of AdipoR1 mRNA was increased approximately 2.5-fold in muscle of streptozotocin (STZ) diabetic mice, but the normal level was restored by insulin administration, indicating that insulin has an inhibitory effect on AdipoR1 expression. To confirm this inhibitory effect of insulin, we performed in vitro experiments using C2C12 skeletal muscle cells. Insulin treatment for 24 h decreased AdipoR1 expression by approximately 60% in C2C12 cells. In addition, this effect was mediated by the phosphatidylinositol 3-kinase-dependent pathway rather than the mitogen-activated protein kinase pathway. AdipoR1 expression in insulin-resistant diabetic mice was also investigated. AdipoR1 expression was decreased by 36% in type 2 diabetic obese db/db mice compared with lean mice. In contrast, hepatic AdipoR2 expression was not significantly changed in either STZ mice or genetically obese mice. Our results indicate that regulation of AdipoR1, but not that of AdipoR2, may be involved in glucose and lipid metabolism in diabetic states.  相似文献   

6.
老头草半仿生提取物的降血糖作用研究   总被引:1,自引:0,他引:1  
本文利用尾静脉注射四氧嘧啶90mg/kg致糖尿病小鼠模型,研究了老头草半仿生提取物(LSBE)的降血糖作用,测定了LSBE对正常和糖尿病模型小鼠的血糖(Glu)、胆固醇(Chol)、甘油三酯(TG)、血清胰岛素(Ins)和胰淀粉酶(Amy)的影响。结果显示LSBE可使正常及模型小鼠血糖明显降低,并发现治疗8d后四氧嘧啶模型小鼠Ins、TG升高,Amy降低。  相似文献   

7.
An obesity‐induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high‐fat diet‐induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity‐induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8–12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity‐induced diabetes in GTG‐treated mice is attributable to the inability of their pancreatic β‐cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity‐induced diabetes after GTG treatment might be a valuable tool for investigating obesity‐induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β‐cells to secrete insulin.  相似文献   

8.
A previous study in our laboratory showed that streptozotocin (STZ) induced diabetic, deoxycorticosterone acetate (DOCA) induced hypertensive rats exhibited significantly lower levels of plasma glucose than did normotensive diabetic animals. The present experiments further investigate the effects of DOCA treatment on fasting levels of plasma glucose and insulin and on their changes after oral glucose challenge in nondiabetic and STZ-diabetic rats. It was found that, in nondiabetic rats, DOCA-induced hypertension was associated with normal glucose levels and glucose tolerance but with significantly lower levels of plasma insulin. DOCA-treated diabetic animals showed significantly lower levels of plasma glucose, but their plasma insulin concentrations were not significantly different from those of the DOCA vehicle treated diabetic rats. DOCA-treated diabetic rats also had significantly higher plasma levels of cholesterol and triglycerides. It is suggested that DOCA may have a direct or indirect action on the assimilation, production, or utilization of glucose, perhaps leading to an improvement in insulin sensitivity and subsequently a decrease in insulin secretion.  相似文献   

9.
The nociceptive effect was measured using withdrawal latency in tail flick test in mice rendered diabetic by administering streptozotocin (200 mg/kg, i.p.). The antinociceptive effect of morphine (4 and 8 mg/kg, s.c.) and cromakalim, a KATP channel opener, (0.3, 1 and 2 micrograms, i.c.v.) was significantly reduced in diabetic mice. Moreover, co-administration of cromakalim(0.3 microgram) did not alter the reduced antinociceptive effect of morphine(4 mg/kg) in diabetic mice. Spleenectomy in diabetic mice restored the decrease in antinociceptive effect of morphine and cromakalim. Multiple dose treatment with insulin to maintain euglycaemia for 3 days in diabetic mice prevented the decrease in antinociceptive effect of morphine and cromakalim. However, hyperglycaemic tyrode's buffer did not alter the pD2 value of morphine in isolated guinea pig ileum suggesting that hyperglycaemia does not interfere with mu receptor mediated responses in vitro. The results suggest that hyperglycaemia induced decrease in antinociceptive effect of morphine and cromakalim may be due to alteration in KATP channels. Some unknown factor from spleen in diabetic mice may be responsible for this alteration in KATP channels in diabetic mice.  相似文献   

10.
A M Gill  T T Yen 《Life sciences》1991,48(7):703-710
The role of islet amyloid polypeptide, also known as amylin, in insulin resistance and in the etiology of diabetes has been a subject of debate. Increased plasma amylin levels have been observed in both obese and type II diabetic patients. However, data on endogenous amylin levels with relation to pharmacological interventions have not been reported. In this study, chronic treatment of obese-diabetic viable yellow mice with ciglitazone was shown to significantly alter various parameters. Blood glucose and plasma insulin, triglyceride, and amylin levels were reduced and glucose tolerance in the presence of exogenous insulin was improved. Insulin/amylin ratios which were found to be significantly elevated in diabetic mice as compared to normal controls, were decreased after ciglitazone treatment. However, observed decreases in both amylin and insulin concentrations due to ciglitazone treatment and their subsequent increases upon withdrawal of treatment were correlated, suggesting cosecretion.  相似文献   

11.
Emerging evidence indicates that irisin provides beneficial effects in diabetes. However, whether irisin influences the development of diabetic cardiomyopathy (DCM) remains unclear. Therefore, we investigated the potential role and mechanism of action of irisin in diabetes‐induced myocardial dysfunction in mice. Type 1 diabetes was induced in mice by injecting streptozotocin, and the diabetic mice were administered recombinant r‐irisin (low or high dose: 0.5 or 1.5 μg/g body weight/day, I.P.) or PBS for 16 weeks. Irisin treatment did not alter blood glucose levels in the diabetic mice. However, the results of echocardiographical and histopathological assays indicated that low‐dose irisin treatment alleviated cardiac fibrosis and left ventricular function in the diabetic mice, whereas high‐dose irisin failed to mitigate the ventricular function impairment and increased collagen deposition. The potential mechanism underlying the effect of low‐dose irisin involved irisin‐mediated inhibition of high glucose‐induced endothelial‐to‐mesenchymal transition (EndMT); conversely, high‐dose irisin treatment enhanced high glucose‐induced MMP expression by stimulating MAPK (p38 and ERK) signalling and cardiac fibroblast proliferation and migration. Low ‐ dose irisin alleviated DCM development by inhibiting high glucose‐induced EndMT. By contrast, high‐dose irisin disrupted normal MMP expression and induced cardiac fibroblast proliferation and migration, which results in excess collagen deposition. Thus, irisin can inhibit high glucose‐induced EndMT and exert a dose‐dependent bidirectional effect on DCM.  相似文献   

12.
Type I diabetes is an autoimmune disease that results in destructive depletion of the insulin-producing beta cells in the islets of Langerhans in pancreas. With the knowledge that hepatocyte growth factor (HGF) is a potent survival factor for a wide variety of cells, we hypothesized that supplementation of HGF may provide a novel strategy for protecting pancreatic beta cells from destructive death and for preserving insulin production. In this study, we demonstrate that expression of the exogenous HGF gene preserved insulin excretion and mitigated hyperglycemia of diabetic mice induced by streptozotocin. Blood glucose levels were significantly reduced in mice receiving a single intravenous injection of naked HGF gene at various time points after streptozotocin administration. Consistently, HGF concomitantly increased serum insulin levels in diabetic mice. Immunohistochemical staining revealed a marked preservation of insulin-producing beta cells by HGF in the pancreatic islets of the diabetic mice. This beneficial effect of HGF was apparently mediated by both protection of beta cells from death and promotion of their proliferation. Delivery of HGF gene in vivo induced pro-survival Akt kinase activation and Bcl-xL expression in the pancreatic islets of diabetic mice. These findings suggest that supplementation of HGF to prevent beta cells from destructive depletion and to promote their proliferation might be an effective strategy for ameliorating type I diabetes.  相似文献   

13.
Hwang D  Seo S  Kim Y  Kim C  Shim S  Jee S  Lee S  Jang M  Kim M  Yim S  Lee SK  Kang B  Jang I  Cho J 《Journal of biosciences》2007,32(4):723-735
To investigate whether selenium (Sel) treatment would impact on the onset of diabetes, we examined serum biochemical components including glucose and insulin, endoplasmic reticulum (ER) stress and insulin signalling proteins, hepatic C/EBP-homologous protein (CHOP) expression and DNA fragmentation in diabetic and non-diabetic conditions of non-obese diabetic (NOD) mice. We conclude that (i) Sel treatment induced insulin-like effects in lowering serum glucose level in Sel-treated NOD mice, (ii) Sel-treated mice had significantly decreased serum biochemical components associated with liver damage and lipid metabolism, (iii) Sel treatment led to the activation of the ER stress signal through the phosphorylation of JNK and eIF2 protein and insulin signal mechanisms through the phosphorylation of Akt and PI3 kinase, and (iv) Sel-treated mice were significantly relieved apoptosis of liver tissues indicated by DNA fragmentation assay in the diabetic NOD group. These results suggest that Sel compounds not only serve as insulin-like molecules for the downregulation of glucose level and the incidence of liver damage, but may also have the potential for the development of new drugs for the relief of diabetes by activating the ER stress and insulin signalling pathways.  相似文献   

14.
Diabetes mellitus and estrogen deficit are known causes of osteopenia in animal models as well as in humans. In the present work, the combined effect of ovariectomy and diabetes was investigated. Diabetes was induced in ovary-intact and ovariectomized female Wistar rats with a single injection (50 mg/kg body weight, i.p.) of streptozotocin. The rats were administered insulin (I) daily or 17-beta estradiol (E2) on alternate days for a period of 35 days and sacrificed. Serum calcium (Ca2+), phosphorus (P), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP), vertebral ALP, collagen, and glycosaminoglycans were estimated. The levels of serum Ca2+ and P increased in diabetic rats, but decreased after I or E2 treatments. Serum ALP and TRAP activity increased in the ovary-intact and ovariectomized diabetic rats. Vertebral ALP activity increased in ovariectomized diabetic rats, but decreased in diabetic rats, which were treated with I or E2. In the vertebrae, TRAP activity was elevated as a result of diabetes, but this was prevented by insulin or estradiol. Diabetes induced a decrease in total collagen in the vertebrae, while I or E2 treatment induced an increase. The levels of chondroitin sulphate and heparan sulphate decreased significantly in the vertebrae of both ovary-intact and ovariectomized diabetic rats, while hyaluronic acid increased. In conclusion, diabetes and ovariectomy each seem to affect the process of matrix formation and mineralization in the bone, and this is aggravated by the combination of diabetes and ovariectomy. The effects of I and E2 were similar, and both hormones reversed the changes brought about by diabetes.  相似文献   

15.
In this study, streptozotocin-nicotinamide-induced mildly diabetic mice and streptozotocin-induced severely diabetic mice were created to compare their characteristics and to investigate the effects of antidiabetic drugs on glucose tolerance. In severely diabetic mice, the pancreatic insulin content decreased to approximately 10% of levels found in normal mice. These mice also showed a decrease in body weight, a marked increase in nonfasting blood glucose levels and urinary glucose excretion, and a marked decline in glucose tolerance due to insulin secretory deficiency. In contrast, the pancreatic insulin content was approximately 50% of normal levels in mildly diabetic mice. These mice did not show any change in body weight, but displayed a mild increase in nonfasting blood glucose levels and urinary glucose excretion, and a mild decline in glucose tolerance due to loss of early-phase insulin secretion. Administration of antidiabetic drugs, namely voglibose, metformin, glibenclamide, sitagliptin and insulin, significantly improved glucose tolerance in mildly diabetic mice. In severely diabetic mice, voglibose, metformin and insulin significantly improved glucose tolerance, but no significant effect was observed for glibenclamide and sitagliptin due to a decreased insulinotropic effect. These results demonstrate that streptozotocin-nicotinamide-induced mildly diabetic mice have many pathological features resembling type 2 diabetes, and can serve as models for the pharmacological evaluation of many antidiabetic drugs.  相似文献   

16.
The purpose of this study was to investigate the effects of moderate-intensity static magnetic field (SMF) on diabetic mice. We studied the effects of SMF on blood glucose of normal mice by starch tolerance and glucose tolerance tests. Then, we evaluated the effects of SMF on blood glucose of diabetic mice by establishing alloxan-induced type 1 diabetic mice and high-fat diet + streptozotocin (STZ)-induced type 2 diabetic mice. The results showed that different magnetic field intensities and blank control did not affect the blood glucose of normal mice. After starch and glucose administration, different magnetic fields could improve the glucose tolerance of normal mice, and this was obvious in the 600 mT group. In the experiment of type 1 diabetic mice induced by alloxan, the results showed that different magnetic field intensities could improve the starch tolerance of mice, and that in the 400 mT group was obvious. In the experiment of type 2 diabetic mice induced by a high-fat diet + STZ, the 400 mT group could reduce food intake and water consumption in the later period. The 600 mT group could improve the starch tolerance of mice. The 400 and 600 mT groups could reduce fasting blood glucose. At the same time, total cholesterol and triglyceride decreased in different magnetic field intensities, and the 600 mT group could significantly increase the serum insulin content of mice. In summary, the results of this study suggest that SMF has a protective role in diabetic mice. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

17.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

18.
Advanced glycation end products (AGEs) appear to contribute to the diabetic complications. This study reports the inhibitory effect of OPB-9195 (OPB), an inhibitor of AGEs formation, and the role of a collagen-specific molecular chaperone, a 47-kDa heat shock protein (HSP47) in diabetic nephropathy. Transgenic mice carrying nitric-oxide synthase cDNA fused with insulin promoter (iNOSTg) leads to diabetes mellitus. The iNOSTg mice at 6 months of age represented diffuse glomerulosclerosis, and the expression of HSP47 was markedly increased in the mesangial area in parallel with increased expression of types I and IV collagens. OPB treatment ameliorated glomerulosclerosis in the iNOSTg mice associated with the decreased expression of HSP47 and types I and IV collagens. The expression of transforming growth factor-beta (TGF-beta) was increased in glomeruli of iNOSTg mice and decreased after treatment with OPB. To confirm these mechanisms, cultured mesangial cells were stimulated with AGEs. AGEs significantly increased the expression of HSP47, type IV collagen, and TGF-beta mRNA. Neutralizing antibody for TGF-beta inhibited the overexpression of both HSP47 and type IV collagen in vitro. In conclusion, AGEs increase the expression of HSP47 in association with collagens, both in vivo and in vitro. The processes may be mediated by TGF-beta.  相似文献   

19.
Osteopontin (OPN) has been shown to be expressed by cells in granulomas of various origins, but whether it plays a functional role in granuloma formation is not known. Here we used a cardiomyopathic hamster (TO2) model, to test the hypothesis that OPN contributes functionally to granuloma development. We immunized cardiomyopathic and normal hamsters by subcutaneous injection of bovine serum albumin in complete Freund's adjuvant, and assessed various tissues for both OPN RNA expression and granuloma formation. Cardiomyopathic hamsters expressed OPN, and formed granulomatous lesions, in heart tissue in both immunized and untreated animals. In addition, immunization induced expression of OPN in lung and lymph nodes of cardiomyopathic (but not normal) hamsters, and also induced granuloma formation in these organs. To test whether OPN expression could play a functional role in inducing granulomas, we produced an adenoviral vector containing the murine OPN gene, and introduced this vector intratracheally into the lungs of normal hamsters. The OPN-containing vector, but not the control vector, induced pulmonary granuloma formation. These studies provided direct in vivo evidence that OPN can contribute functionally to the formation of granulomatous lesions, and suggest that OPN expression may be a common factor involved in formation of granulomas of various origin.  相似文献   

20.
Wang LY  Sun W  Chen MZ  Wang X 《生理学报》2003,55(6):641-647
通过基因治疗的方法补充胰岛素已用于实验性治疗胰岛素依赖型糖尿病(IDDM)。本研究构建了含有重组人前胰岛素原基因的棵质粒DNA载体(pCMV—IN),将其肌肉注射入链脲佐菌素(STZ)诱发的糖尿病C57小鼠体内,并辅以电穿孔方法,以获得在体胰岛素转基因治疗。该质粒载体表达的胰岛素mRNA,可通过RT—PCR方法在转基因局部的骨骼肌组织中检测到。在接受pCMV—IN注射的糖尿病小鼠中,血浆胰岛素水平显著升高,达到了未注射STZ的正常对照小鼠的水平,且胰岛素的表达可持续至少35d。pCMV—IN质粒注射转基因治疗显著降低了糖尿病小鼠在第7至35d的血糖水平,其下降幅度约6mmol/L;转基因治疗也显著降低了严重糖尿病小鼠的死亡率,其第6周时的死亡率由100%降为37%。结果表明,直接肌肉注射含人前胰岛素原基因裸质粒可获得胰岛素的有效表达,显著降低糖尿病小鼠的血糖水平并降低严重糖尿病小鼠的死亡率。裸质粒注射胰岛素转基因治疗有望成为IDDM的一种有效治疗手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号