首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of exogenous orthophosphate and mutations in regulatory genes of alkaline phosphatase on the level of nonspecific acid phosphatase was studied. The level of this enzyme as well as the level of alkaline phosphatase were shown to be regulated by exogenous orthophosphate being derepressed under phosphate starvation. The derepression of acid phosphatase is accompanied by more rapid secretion of enzyme from membranes to soluble fraction. Mutations in all the four regulatory genes decrease the level of enzyme in cells. Genes phoR and phoS, participating in regulation of alkaline phosphatase, are required for the derepression of acid phosphatase under the conditions of phosphate starvation.  相似文献   

2.
The effects of orthophosphate and mutations in the regulatory genes of alkaline phosphatase on the activities of pyrophosphatase and polyphosphatase of E. coli were studied. It was shown that orthophosphate represses the synthesis of alkaline phosphatase as well as that of polyphosphatase without having any effect on pyrophosphatase. The genes phoR and phoS are involved in the formation of a repressory complex both for alkaline phosphatase and polyphosphatase. The gene phoT is probably involved in a partial repression of pyrophosphatase synthesis.  相似文献   

3.
The Escherichia coli structural gene for alkaline phosphatase was inserted into Salmonella typhimurium by episomal transfer in order to determine whether this enzyme would continue to be localized to the periplasmic space of the bacterium even though it was formed in a cell that does not synthesize alkaline phosphatase. The S. typhimurium heterogenote synthesized alkaline phosphatase under conditions identical to that observed with E. coli. This enzyme appeared to be identical to that synthesized by E. coli, and was quantitatively released from the bacterial cell by spheroplast formation with lysozyme. These results showed that localization is not a property unique to the E. coli cell and suggested that, in E. coli, enzyme location is related to the structure of the protein. Formation of alkaline phosphatase in the S. typhimurium heterogenote was repressed in cells growing in a medium with excess inorganic phosphate, even though only one of the three regulatory genes for this enzyme is on the episome. Thus, S. typhimurium can supply the products of the other two regulatory genes essential for repression even though this bacterium seems to lack the structural gene for alkaline phosphatase.  相似文献   

4.
5.
Abstract Total trehalose-6-phosphate synthase activity decreased in cell extracts from Candida utilis under conditions inducing activation of the regulatory trehalase by protein kinase catalysed phosphorylation. The synthase activity was reactivated by treatment with alkaline phosphatase revealing the presence of an enzyme whose activity is inactivated by reversible phosphorylation. The occurrence in the trehalose-6-phosphate synthase complex of a second synthase enzyme whose activity is not controlled by phosphorylation and dephosphorylation was demonstrated following gel filtration of cell extracts. The activity of the isolated enzymes was differently modified in vitro by the presence of alkaline phosphatase, ATP, glucose or protein kinase.  相似文献   

6.
An alkaline phosphatase secretion-blocked mutant of Bacillus licheniformis 749/C was isolated. This mutant had defects in the phoP and phoR regions of the chromosome. The selection procedure was based on the rationale that N-methyl-N'-nitro-N-nitrosoguanidine can induce mutations of closely linked multiple genes. The malate gene and the phoP and phoR genes are located at the 260-min position in the Bacillus subtilis chromosome; hence, the malate gene could be used as a marker for the mutation of the phoP and phoR regions of the chromosome. In a two-step selection procedure, strains defective in malate utilization were first selected with the cephalosporin C procedure. Second, these malate-defective strains were further screened in a dye medium to select strains with defects in alkaline phosphatase secretion. One stable mutant (B. licheniformis 749/cNM 105) had a total secretion block for alkaline phosphatase and had the following additional characteristics: (i) the amount of alkaline phosphatase synthesized was comparable to that in the wild type; (ii) the alkaline phosphatase was membrane bound; (iii) the mutant strain alkaline phosphatase, in contrast to that of the wild type, could not be extracted with MgCl2, although the amounts of protein extracted from each strain were comparable; (iv) the sodium dodecyl sulfate-polyacrylamide gel pattern of MgCl2-extracted proteins from the mutant strain was different from that of the wild-type proteins; (v) the mutant, unlike the wild type, could not use malate as a sole source of carbon; and (vi) the outside surface of the wall of the mutant cells contained an additional electron-dense layer that was not present on the wild-type cell wall surface.  相似文献   

7.
The genes encoding the rrn operons, the 4.5S and 6S RNAs, elements of protein secretion, and outer membrane proteins F and I, and regulatory as well as structural genes for exotoxin A, alkaline phosphatase, and alginate and tryptophan biosynthesis, were assigned on the SpeI/DpnI macrorestriction map of the Pseudomonas aeruginosa PAO chromosome. The zero point of the map was relocated to the chromosomal origin of replication.  相似文献   

8.
An investigation was undertaken to determine if the placental alkaline phosphatase of the rat enters the maternal circulation and to study some of its characteristics. Unlike human, rat placental alkaline phosphatase was found to be heat labile and the alkaline phosphatase activity in the serum of both pregnant and non-pregnant rats was also found to be heat labile. Also unlike the human, the alkaline phosphatase activity in rat serum does not increase as pregnancy progresses to term. In an endeavour to establish if the rat placental enzyme is present in the serum of the pregnant rat, the characteristics of the enzyme in both placental extracts and serum of non-pregnant and 1-, 2- and 3-week pregnant rats were studied using the techniques of heat stability at 56°, gel filtration through Sephadex columns, disc gel electrophoresis, and L-phenylalanine inhibition. The presence of rat placental alkaline phosphatase in maternal serum could not be positively demonstrated by any of these procedures, suggesting that rat placental alkaline phosphatase does not enter the maternal serum.  相似文献   

9.
Curcuminoids, the yellow pigments of curcuma, exhibit anticarcinogenic, antioxidative and hypocholesterolemic activities. To understand the molecular basis for the hypocholesterolemic effects, we examined the effects of curcumin on hepatic gene expression, using the human hepatoma cell line HepG2 as a model system. Curcumin treatment caused an up to sevenfold, concentration-dependent increase in LDL-receptor mRNA, whereas mRNAs of the genes encoding the sterol biosynthetic enzymes HMG CoA reductase and farnesyl diphosphate synthase were only slightly increased at high curcumin concentrations where cell viability was reduced. Expression of the regulatory SREBP genes was moderately increased, whereas mRNAs of the PPARalpha target genes CD36/fatty acid translocase and fatty acid binding protein 1 were down-regulated. LXRalpha expression and accumulation of mRNA of the LXRalpha target gene ABCg1 were increased at low curcumin concentrations. Although curcumin strongly inhibited alkaline phosphatase activity, an activation of a retinoic acid response element reporter employing secreted alkaline phosphatase was observed. These changes in gene expression are consistent with the proposed hypocholesterolemic effect of curcumin.  相似文献   

10.
The participation of global regulators GrrS (sensor kinase GacA/GacS-like regulatory system) and sigma S subunit of RNA polymerase in the control of phosphatase synthesis in a soil bacterium Serratia plymuthica was shown. In cells of null mutants for genes grrS and rpoS synthesis of low-acidic and alkaline phosphatases was markedly decreased.  相似文献   

11.
Summary In the fungus Aspergillus nidulans the levels of a number of enzymes whose location is at least in part extracellular (e.g. acid phosphatase, alkaline phosphatase, phosphodiesterase) and of certain permeases (e.g. that for -amino-n-butyrate) are controlled by the pH of the growth medium. For example, at acidic pH, levels of acid phosphatase are high and those of alkaline phosphatase are low whereas at alkaline pH the reverse is true. Mutations in five genes, palA, B, C, E and F, mimic the effects of growth at acid pH whereas mutations in pacC mimic the effects of growth at alkaline pH. palA, B, C, E and F mutations result in an intracellular pH (pHin) which is more alkaline than that of the wild type whereas pacC mutations result in a pHin more acidic than that of the wild type. This indicates that these mutations exert their primary effects on the regulation of gene expression by pH rather than on the pH homeostatic mechanism but that the expression of at least some component(s) of the pH homeostatic mechanism is subject to the pH regulatory system. It is suggested that pacC might be a wide domain regulatory gene whose product acts positively in some cases (e.g. acid phosphatase) and negatively in others (e.g. alkaline phosphatase). The products of palA, B, C, E and F are proposed to be involved in a metabolic pathway leading to synthesis of an effector molecule able to prevent the (positive and negative) action of the pacC product.These genes are, to our knowledge, the first examples of genes involved in the regulation of extracellular enzyme and permease synthesis by the pH of the growth medium to be described in any organism.  相似文献   

12.
The synthesis of alkaline phosphatase in Neurospora crassa   总被引:2,自引:0,他引:2  
Mutations which affect the regulation of Neurospora repressible alkaline phosphatase do so by altering the rate of de novo alkaline phosphatase synthesis. In regulatory mutants the rate of alkaline phosphatase polypeptide synthesis can vary over a 1000-fold range. Following transfer to phosphate-free medium, the wild-type cell is capable of increasing the rate of synthesis of alkaline phosphatase molecules within 30-45 min.  相似文献   

13.
The alkaline phosphatases present in choriocarcinoma cells, either untreated or treated with 5-bromo-2′-deoxyuridine (BrdUrd), were purified and characterized. Three forms of phosphatase [I, IIa (or IIIa), and IIb (or IIIb)]were isolated from both the untreated and BrdUrd-treated cells. Although BrdUrd induced the synthesis of all three forms of alkaline phosphatase in these cells, the synthesis of forms IIa and IIb was, however, preferentially stimulated. The forms of phosphatase in choriocarcinoma cells resembled each other in their kinetic properties and thermal lability, but differed in their molecular weights and in their electrophoretic mobilities in nondenaturing polyacrylamide gels. All three phosphatases were inactivated by antiserum to term-placental alkaline phosphatase. The alkaline phosphatases from choriocarcinoma cells differed, however, from the enzyme from term placentas in several physicochemical properties. The phosphatases from choriocarcinoma cells had a lower Km value for p-nitrophenyl phosphate, were more sensitive to inhibition by l-leucine, levamisole, l-p-bromotetramisole, and EDTA, and were more heat-labile. Phosphatase I comigrated with term-placental alkaline phosphatase on nondenaturing polyacrylamide electrophoretic gels, but phosphatases IIa and IIb migrated more slowly. The apparent molecular weights of phosphatase forms I, IIa, and IIb were estimated by gel filtration and polyacrylamide gel electrophoresis to be 115,000, 240,000, and 510,000, respectively. Although three molecular forms of alkaline phosphatase occurred in choriocarcinoma cells, the subunit molecular weight of these phosphatases appeared to be identical to each other and to the subunit of term-placental alkaline phosphatase (63,000 MW). The alkaline phosphatase in choriocarcinoma cells therefore exists in the dimeric, tetrameric, and octameric forms.  相似文献   

14.
Three proteins possessing alkaline phosphatase activity were detected in a fraction of periplasmic material ofEscherichia coli K-10 and its mutants with constitutive synthesis of alkaline phosphatase. They also showed acid phosphatase, pyrophosphatase and ATPase activities. Through the use of phosphatase-negative mutants it was shown that these proteins were the products of a single structural gene and therefore represented alkaline phosphatase isozymes. The numbers of enzyme isoforms and possibly the spectrum of their phosphohydrolase activities were controlled by exogenous orthophosphate and depended on the integrity of regulator genes for alkaline phosphatase.  相似文献   

15.
The envZ11 missense mutation in the regulatory gene envZ pleiotropically repressed synthesis of OmpF, alkaline phosphatase, and several proteins of the maltose regulon. Procaine treatment of wild-type cells resulted in the same phenotype through an envZ+-mediated mechanism. Here we show that envZ11-procaine act differently on the mal and pho regulons. In the mal system, the expression of the positive regulator gene malT, measured as beta-galactosidase activity of a malT-lac+ operon fusion, was drastically reduced by procaine treatment or by the envZ11 mutation. In contrast, expression of the positive regulator of the pho regulon phoB was not reduced by procaine treatment. The products of the regulatory genes phoM, phoR, and phoU were also not required for procaine action. Procaine and envZ11 inhibited expression of only two products of the pho regulon, alkaline phosphatase and the PhoE porin. The conclusion that envZ11-procaine act differently on the mal and the pho regulons is supported by our ability to isolate second-site mutations with a Mal+ PhoA- phenotype in an envZ11 strain.  相似文献   

16.
Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.  相似文献   

17.
phoB is a positive regulatory gene for phoA, which codes for alkaline phosphatase, as well as for other genes belonging to the phosphate (pho) regulon whose expression is inducible by phosphate limitation in Escherichia coli. A hybrid plasmid that contains a phoB-lacZ fused gene was constructed in vitro. This plasmid enabled us to study phoB gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the phosphate regulon, and phoB gene expression in these strains was studied under limited and excess phosphate conditions. It was found that the regulation of phoB expression was very similar to that of phoA expression. Expression of both genes was induced by phosphate starvation. Both genes were constitutively expressed in phoR, phoS, phoT and phoU mutants and were not expressed in a phoR-phoM double mutant. The implications of these findings for the regulatory mechanism of the pho regulon are discussed.  相似文献   

18.
J C Tsang  J Landes  W Nehmer 《Microbios》1979,24(96):103-111
The effect of aqueous-ether treatment according to the method of Ribi et al. (1961) on the release of alkaline phosphatase from cells of two strains of Serratia marcescens was studied. By this method, lipopolysaccharide-protein (endotoxin) complexes associated with alkaline phosphatase activities were released from both strain 08 and strain Bizio. SDS-polyacrylamide gel electrophoresis followed by enzymatic assay showed the presence of two active components in each strain. Fractions released from strain 08 contained alkaline phosphatase A (140,000 dalton) and alkaline phosphatase B (110,000) daltons) while those from strain Bizio contained alkaline phosphatase A' (190,000 daltons) and alkaline phosphatase B (110,000 daltons). Although it is known that saline plays a role in the release of alkaline phosphatase activities from cell envelope of Gram-negative bacteria the presence of saline in the extracting medium affects only slightly the chemical composition and not at all on the enzymatic nature of the released components. By comparing the enzymatic profiles of the materials released by other techniques, such as polymyxin B treatment and osmotic shock, it appears that alkaline phosphatase activities released by aqueous-ether treatment of whole cells of S. marcescens originate from the periplasmic space.  相似文献   

19.
Closely linked mutations in either of the two putative genes of the sporulation locus spoIIA can affect, in quite diverse ways, spore incidence, the production of alkaline phosphatase and DNAase, and the stability of the cells in sporulation medium. It is concluded that the locus has a regulatory function affecting the activation or induction of at least two, and possibly more, sporulation-associated operons.  相似文献   

20.
Alkaline phosphatase [EC 3.1.3.1.] was purified about 250-fold from rat kidney, and its enzymological properties were studied. Kidney homogenate was extracted with n-butanol, passed through Sephadex G-200 and chromatographed on a DEAE-cellulose column. The peak from the DEAE-cellulose column was subjected to isoelectric focusing, and the alkaline phosphatase activity was separated into two peaks. The molecular weights of alkaline phosphatase in these peaks were 4.8.X10(4) and 1.0X10(5), as determined by SDS-polyacrylamide gel electrophoresis. Anti-serum against alkaline phosphatase from rat kidney was prepared, and was shown to neutralize the activity from kidney, liver or bone, but not that from intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号