首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Cura?ao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

2.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

3.
Summary This is the first study based on numerical analysis of the abundance of 11 scleractinian corals of depths at between 100–210 m in the Red Sea twilight zone. Two distinct coral communities were found: a Leptoseris fragilis community at a depth of 100–130 m (zone 1) and a Dendrophillia horsti community below 130 m (zone 2, 3). Population densities and coral coverage are very low; distribution of individuals is highly clumped. Highest observed densities on 100 m2 were 2720 individuals for L. fraglis, 2720 for D. horsti and 2260 for Javania insignis. Calculated coverage rates were maximally 3.6% (L. fragilis), 0.08% (D. horsti) and 0.11% (J. insignis). L. fragilis, the only symbiont bearing coral, was very abundant. It has an unusual depth range for a photosynthesising coral. Coral density is only weakly correlated with hard bottom coverage. Species diversity with an average of 8 species is highest at 120–170 m and decreases in shallower and deeper water. The study depth range is a transient zone for coral distribution. It contains the upper distribution limits of a few deep sea corals and the lower ones of several shallower water species. Ahermatypic corals, collected at 160–170 m depth, were transplanted from their original depth to 159, 118, 70 and 40 m; after one year most species survived transplantation far beyond their upper distributional limits. The symbiotic L. fragilis, collected at 120 m, survived transplantation to deep water (159 m) as well as shallow zones (90, 70 and 40 m). The study demonstrates the feasibility of line-transect methods for coral community studies with a submersible.  相似文献   

4.
The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium.  相似文献   

5.
Cladocora caespitosa is a common zooxanthellate, ahermatypic, constructional scleractinian coral in shallow waters of the present-day Mediterranean. Extensive coral banks in Upper Pliocene shallow marine deposits of the Almería-Níjar Basin (SE Spain) contain the same species. These banks occur on debris-flow conglomerates deposited in a fan delta, or on bioclastic accumulations interpreted as storm deposits. Direct relationships of coral beds with coastal facies indicate that C. caespitosa colonized shallow settings near the paleocoast, probably not deeper than 20–30 m. Low turbulence allowed corals to colonize substrates, which remained stable for long periods. Activity of organisms in the coral community, storms, and detritic discharges from the fan delta were the most significant mechanisms disturbing the coral development. The hard substrata provided by coral banks promoted colonization by cemented and epibyssate organisms. Coral banks marked maximum flooding surfaces at the end of transgressive systems tracks. They were suddenly buried by sediment input into the basin. Taphonomic signatures measured on components of the coral bank communities indicate a low turbulence environment, probably a bay. The low hydraulic energy further inhibited post-burial reworking, thus promoting the in situ preservation of a great part of the organisms inhabiting the bioconstructions. Accepted: 2 December 1997  相似文献   

6.
The microbial community associated with the reef building coral Pocillopora damicornis located on the Great Barrier Reef was investigated using culture-independent molecular microbial techniques. The microbial communities of three separate coral colonies were assessed using clone library construction alongside restriction fragment length polymorphism and phylogenetic analysis. Diversity was also investigated spatially across six replicate samples within each single coral colony using 16S rDNA and rpoB-DGGE analysis. Clone libraries demonstrated that the majority of retrieved sequences from coral tissue slurry libraries affiliated with gamma-Proteobacteria. This contrasted with clone libraries of seawater and coral mucus, which were dominated by alpha-Proteobacteria. A number of retrieved clone sequences were conserved between coral colonies; a result consistent with previous studies suggesting a specific microbe-coral association. rpoB-DGGE patterns of replicate tissue slurry samples underestimated microbial diversity, but demonstrated that fingerprints were identical within the same coral. These fingerprints were also conserved across coral colonies. The 16S rDNA-DGGE patterns of replicate tissue slurry samples were more complex, although non-metric multidimensional scaling (nMDS) analysis showed groupings of these banding patterns indicating that some bacterial diversity was uniform within a coral colony. Sequence data retrieved from DGGE analysis support clone library data in that the majority of affiliations were within the gamma-Proteobacteria. Many sequences retrieved also affiliated closely with sequences derived from previous studies of microbial diversity of healthy corals in the Caribbean. Clones showing high 16S rDNA sequence identity to both Vibrio shiloi and Vibrio coralliilyticus were retrieved, suggesting that these may be opportunist pathogens. Comparisons of retrieved microbial diversity between two different sampling methods, a syringe extracted coral mucus sample and an airbrushed coral tissue slurry sample were also investigated. Non-metric multidimensional scaling of clone library data highlighted that clone diversity retrieved from a coral mucus library more closely reflected the diversity of surrounding seawater than a corresponding coral tissue clone library.  相似文献   

7.
Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management. Current conditions are the result of "top-down" conservation strategies in Zihuatanejo, as Federal and Municipal authorities do not coordinate, disregard local community in coral reef management, and ignore the intimate relationship between the coastal and marine realms. This work confirms the importance of conservation strategies with a holistic approach, considering both terrestrial and marine ecosystems in coastal areas; and that these initiatives should include local coastal communities in management and decision-taking processes done by government authorities.  相似文献   

8.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

9.
  1. Urbanized coral reefs experience anthropogenic disturbances caused by coastal development, pollution, and nutrient runoff, resulting in turbid, marginal conditions in which only certain species can persist. Mortality effects are exacerbated by increasingly regular thermal stress events, leading to shifts towards novel communities dominated by habitat generalists and species with low structural complexity.
  2. There is limited data on the turnover processes that occur due to this convergence of anthropogenic stressors, and how novel urban ecosystems are structured both at the community and functional levels. As such, it is unclear how they will respond to future disturbance events.
  3. Here, we examine the patterns of coral reef community change and determine whether ecosystem functions provided by specialist species are lost post‐disturbance. We present a comparison of community and functional trait‐based changes for scleractinian coral genera and reef fish species assemblages subject to coastal development, coastal modification, and mass bleaching between two time periods, 1975–1976 and 2018, in Nakagusuku Bay, Okinawa, Japan.
  4. We observed an increase in fish habitat generalists, a dominance shift from branching to massive/sub‐massive corals and increasing site‐based coral genera richness between years. Fish and coral communities significantly reassembled, but functional trait‐based multivariate space remained constant, indicating a turnover of species with similar traits. A compression of coral habitat occurred, with shallow (<5 m) and deep (>8 m) coral genera shifting towards the mid‐depths (5–8 m).
  5. We show that although reef species assemblages altered post disturbance, new communities retained similar ecosystem functions. This result could be linked to the stressors experienced by urban reefs, which reflect those that will occur at an increasing frequency globally in the near future. Yet, even after shifts to disturbed communities, these fully functioning reef systems may maintain high conservation value.
  相似文献   

10.
The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.  相似文献   

11.
Sandy or permeable sediment deposits cover the majority of the shallow ocean seafloor, and yet the associated bacterial communities remain poorly described. The objective of this study was to expand the characterization of bacterial community diversity in permeable sediment impacted by advective pore water exchange and to assess effects of spatial, temporal, hydrodynamic, and geochemical gradients. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze nearly 100 sediment samples collected from two northeastern Gulf of Mexico subtidal sites that primarily differed in their hydrodynamic conditions. Communities were described across multiple taxonomic levels using universal bacterial small subunit (SSU) rRNA targets (RNA- and DNA-based) and functional markers for nitrification (amoA) and denitrification (nosZ). Clonal analysis of SSU rRNA targets identified several taxa not previously detected in sandy sediments (i.e., Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Firmicutes). Sequence diversity was high among the overall bacterial and denitrifying communities, with members of the Alphaproteobacteria predominant in both. Diversity of bacterial nitrifiers (amoA) remained comparatively low and did not covary with the other gene targets. TRFLP fingerprinting revealed changes in sequence diversity from the family to species level across sediment depth and study site. The high diversity of facultative denitrifiers was consistent with the high permeability, deeper oxygen penetration, and high rates of aerobic respiration determined in these sediments. The high relative abundance of Gammaproteobacteria in RNA clone libraries suggests that this group may be poised to respond to short-term periodic pulses of growth substrates, and this observation warrants further investigation.  相似文献   

12.
UniFrac: a New Phylogenetic Method for Comparing Microbial Communities   总被引:18,自引:8,他引:10       下载免费PDF全文
We introduce here a new method for computing differences between microbial communities based on phylogenetic information. This method, UniFrac, measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both. UniFrac can be used to determine whether communities are significantly different, to compare many communities simultaneously using clustering and ordination techniques, and to measure the relative contributions of different factors, such as chemistry and geography, to similarities between samples. We demonstrate the utility of UniFrac by applying it to published 16S rRNA gene libraries from cultured isolates and environmental clones of bacteria in marine sediment, water, and ice. Our results reveal that (i) cultured isolates from ice, water, and sediment resemble each other and environmental clone sequences from sea ice, but not environmental clone sequences from sediment and water; (ii) the geographical location does not correlate strongly with bacterial community differences in ice and sediment from the Arctic and Antarctic; and (iii) bacterial communities differ between terrestrially impacted seawater (whether polar or temperate) and warm oligotrophic seawater, whereas those in individual seawater samples are not more similar to each other than to those in sediment or ice samples. These results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.  相似文献   

13.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

14.
The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.  相似文献   

15.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

16.
Marine macroalgae are known to harbor large populations of microbial symbionts, and yet, microbe symbiosis in invasive macroalgae remains largely unknown. In this study, we applied molecular methods to study microbial communities associated with two invasive algae Acanthophora spicifera and Gracilaria salicornia and the two native algae Gracilaria coronopifolia and Laurencia nidifica at spatial and temporal scales in Hawaiian coral reef ecosystems. Bacterial communities of both the invasive and native macroalgae displayed little spatial and temporal variations, suggesting consistent and stable bacterial associations with these macroalgae. Results of this study identified three types of bacterial populations: nonspecific (present in both algal and water samples); algae-specific (found in all algal species); and species-specific (only found in individual species). The bacterial diversity of invasive algae was lower than that of their native counterparts at phylum and species levels. Notably, the vast majority (71 %) of bacterial communities associated with the invasive algae G. salicornia were representatives of Cyanobacteria, suggesting a potential ecological significance of symbiotic Cyanobacteria.  相似文献   

17.
The CARICOMP site at Puerto Morelos, Mexico was monitored from 1993 to 2005. No significant changes in air temperature, wind patterns, periodicity and quantity of rainfall, sea-surface temperature and water transparency were observed between sampling years. During the study four hurricane impacts were registered. At the coral reef site overall mean cover of fleshy algae (47%) and turf algae (36%) were high, whereas cover of corals (2%) and sponges (3%), and abundance of sea-urchins (0.04 org m(-2)) were consistently low. Gorgonians were dominant and showed changes in their community structure; the number of species increased from 1993 to 1995, their abundance decreased after Hurricane Roxanne (1995) and recovered by 2001. At four seagrass sites total community biomass remained constant (707.1-929.6 g dry m(-2)) but the above-ground biomass of the seagrass Syringodium filiforme and fleshy algae increased gradually. Total biomass (531-699 g dry m(-2)) and leaf productivity (0.89-1.56 g dry m(-2) d(-1)) of the seagrass Thalassia testudinum remained constant, but the species invested proportionally more biomass in above-ground leaf tissues at the end of the study. The minor hurricanes from 1993 until 2005 had no detectable impacts on the seagrass beds, however, the major Hurricane Wilma (October 2005) changed the community composition at three stations and caused complete burial of the vegetation at a coastal station. The gradual changes in the seagrass and reef communities recorded in the 12 years of continuous monitoring of the CARICOMP site may reflect the increased pollution caused by the rapid augment in urban and tourist developments along the coasts and inland from Puerto Morelos, coupled with poor water management practices.  相似文献   

18.
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.  相似文献   

19.
Coral growth rate can be affected by environmental parameters such as seawater temperature, depth, and light intensity. The natural reef environment is also disturbed by human influences such as anthropogenic pollutants, which in Barbados are released close to the reefs. Here we describe a relatively new method of assessing the history of pollution and explain how these effects have influenced the coral communities off the west coast of Barbados. We evaluate the relative impact of both anthropogenic pollutants and natural stresses. Sclerochronology documents framework and skeletal growth rate and records pollution history (recorded as reduced growth) for a suite of sampled Montastraea annularis coral cores. X-radiography shows annual growth band patterns of the corals extending back over several decades and indicates significantly lower growth rate in polluted sites. Results using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the whole sample (aragonite, organic matter, trapped particulate matter, etc.), have shown contrasting concentrations of the trace elements (Cu, Sn, Zn, and Pb) between corals at different locations and within a single coral. Deepwater corals 7 km apart, record different levels of Pb and Sn, suggesting that a current transported the metal pollution in the water. In addition, the 1995 hurricanes are associated with anomalous values for Sn and Cu from most sites. These are believed to result from dispersion of nearshore polluted water. We compared the concentrations of trace elements in the coral growth of particular years to those in the relevant contemporaneous seawater. Mean values for the concentration factor in the coral, relative to the water, ranged from 10 for Cu and Ni to 2.4 and 0.7 for Cd and Zn, respectively. Although the uncertainties are large (60–80%), the coral record enabled us to demonstrate the possibility of calculating a history of seawater pollution for these elements from the 1940s to 1997. Our values were much higher than those obtained from analysis of carefully cleaned coral aragonite; they demonstrate the incorporation of more contamination including that from particulate material as well as dissolved metals.  相似文献   

20.
Ichthyofauna associated to a shallow reef in Morrocoy National Park, Venezuela. Morrocoy National Park is one of the most studied coastal marine environments in Venezuela; however, efforts have been concentrated in south zone. In this study we select a shallow reef located in the north zone, characterized the benthic community and the structure of the fish community was studied using visual censuses. The benthic community was dominated by dead coral covered by algae (31%) and the live coral coverage was 12%. A total of 65 fish species belonging to 24 families were recorded, being Pomacentridae (43%), Scaridae (19%) and Haemulidae (15%) the most abundant families. Significant differences in the fish species abundances were found along the depth gradient, which could be related to the habitat characteristics, nevertheless herbivorous species dominance was evident at all depth strata. There seems to be a trend towards greater richness and density in the south zone reefs, and these differences may be related to the presence of extensive seagrass meadows and mangrove forests in that area or to differences in the recruitment patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号