首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The N-end rule pathway, a subset of the ubiquitin pathway, relates the in vivo half-life of a protein to the identity of its N-terminal residue. Mice lacking NTAN1, a component of the N-end rule pathway, showed altered learning and memory, and socially conditioned behavioral alteration ( Balogh, Kwon, & Denenberg 1999, 2000 ; Kwon, Balogh et al . 2000 ; Balogh et al . 2001 ). Mice lacking UBR1 (E3α), one of at least three recognition components of the N-end rule pathway, are viable and outwardly normal. Here we describe behavioral characterizations of UBR1 knockout (UBR1–/–) mice. Compared to congenic littermates, UBR1–/– mice exhibited less spontaneous activity in an open field and took longer to locate the hidden platform during eight-week Morris water maze retention. In contrast, they performed better in horizontal–vertical discrimination and Lashley III maze testing. No statistically significant differences in inhibitory learning were observed. With the exception of enhanced Lashley III maze performance, these data parallel findings with NTAN1–/– mice lacking the upstream component of UBR1. These results suggest that, like NTAN1, UBR1 is involved in learning and memory.  相似文献   

2.
Substrates of the ubiquitin-dependent N-end rule pathway include proteins with destabilizing N-terminal residues. UBR1(-/-) mice, which lacked the pathway's ubiquitin ligase E3alpha, were viable and retained the N-end rule pathway. The present work describes the identification and analysis of mouse UBR2, a homolog of UBR1. We demonstrate that the substrate-binding properties of UBR2 are highly similar to those of UBR1, identifying UBR2 as the second E3 of the mammalian N-end rule pathway. UBR2(-/-) mouse strains were constructed, and their viability was found to be dependent on both gender and genetic background. In the strain 129 (inbred) background, the UBR2(-/-) genotype was lethal to most embryos of either gender. In the 129/B6 (mixed) background, most UBR2(-/-) females died as embryos, whereas UBR2(-/-) males were viable but infertile, owing to the postnatal degeneration of the testes. The gross architecture of UBR2(-/-) testes was normal and spermatogonia were intact as well, but UBR2(-/-) spermatocytes were arrested between leptotene/zygotene and pachytene and died through apoptosis. A conspicuous defect of UBR2(-/-) spermatocytes was the absence of intact synaptonemal complexes. We conclude that the UBR2 ubiquitin ligase and, hence, the N-end rule pathway are required for male meiosis and spermatogenesis and for an essential aspect of female embryonic development.  相似文献   

3.
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.  相似文献   

4.
The gene PRT1 of Arabidopsis, encoding a 45-kD protein with two RING finger domains, is essential for the degradation of F-dihydrofolate reductase, a model substrate of the N-end rule pathway of protein degradation. We have determined the function of PRT1 by expression in yeast (Saccharomyces cerevisiae). PRT1 can act as a ubiquitin protein ligase in the heterologous host. The identified substrates of PRT1 have an aromatic residue at their amino-terminus, indicating that PRT1 mediates degradation of N-end rule substrates with aromatic termini but not of those with aliphatic or basic amino-termini. Expression of model substrates in mutant and wild-type plants confirmed this substrate specificity. A ligase activity exclusively devoted to aromatic amino-termini of the N-end rule pathway is apparently unique to plants. The results presented also imply that other known substrates of the plant N-end rule pathway are ubiquitylated by one or more different ubiquitin protein ligases.  相似文献   

5.
Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway.  相似文献   

6.
UBR5 (ubiquitin protein ligase E3 component n-recognin 5)/EDD (E3 ligase identified by differential display) is an E3 ubiquitin ligase that is a potential biomarker for poor prognosis for recurrent, platinum-resistant ovarian cancer. UBR5 has a role in the DNA damage response and many such proteins are regulated by phosphorylation. UBR5 is a 309 kDa nuclear phosphoprotein that we previously identified as a substrate of the MAP kinase ERK2. With its 477 potential phosphorylation sites, little is known about UBR5 phosphorylation and how it may regulate protein function. Currently, thirty-four sites of phosphorylation on UBR5 have been reported in the literature, mostly identified by large scale proteomics studies of tissues or of cells after various treatments; however, no studies have specifically targeted the identification of UBR5 phosphorylation sites. In this study, we used Liquid Chromatography-Mass Spectrometry (LC-MS/MS) to obtain a total sequence coverage of 64.3% from combining tryptic and GluC digests on UBR5 isolated from transfected COS-1 cells. We identified 24 sites of phosphorylation, 18 of which are novel sites. This data enhances our knowledge of UBR5 phosphorylation and provides a framework for the study of how phosphorylation affects UBR5 function.  相似文献   

7.

Background

Johanson-Blizzard syndrome (JBS; OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons) recognized by UBR1 are destabilizing N-terminal residues of protein substrates.

Methodology/Principal Findings

Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R) was inactive in yeast-based activity assays, the other one (Q1224E) had a detectable but weak activity, and the third one (V146L) exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients.

Conclusions/Significance

These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.  相似文献   

8.
Varshavsky A  Turner G  Du F  Xie Y 《Biological chemistry》2000,381(9-10):779-789
Eukaryotes contain a highly conserved multienzyme system which covalently links a small protein, ubiquitin, to a variety of intracellular proteins that bear degradation signals recognized by this system. The resulting ubiquitin-protein conjugates are degraded by the 26S proteasome, an ATP-dependent protease. Pathways that involve ubiquitin play major roles in a huge variety of processes, including cell differentiation, cell cycle, and responses to stress. In this article we briefly review the design of the ubiquitin system, and describe two recent advances, the finding that ubiquitin ligases interact with specific components of the 26S proteasome, and the demonstration that peptides accelerate their uptake into cells by activating the N-end rule pathway, one of several proteolytic pathways of the ubiquitin system.  相似文献   

9.
  1. Download : Download high-res image (168KB)
  2. Download : Download full-size image
  相似文献   

10.
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination.  相似文献   

11.
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.  相似文献   

12.
Human immunodeficiency virus type-1 (HIV-1) integrase catalyzes the irreversible insertion of the viral genome into host chromosomal DNA. We have developed a mammalian expression system for the synthesis of authentic HIV-1 integrase in the absence of other viral proteins. Integrase, which bears a N-terminal phenylalanine, was found to be a short-lived protein in human embryo kidney 293T cells. The degradation of integrase could be suppressed by proteasome inhibitors. N-terminal phenylalanine is recognized as a degradation signal by a ubiquitin-proteasome proteolytic system known as the N-end rule pathway. The replacement of N-terminal phenylalanine with methionine, valine, or glycine, which are stabilizing residues in the N-end rule, resulted in metabolically stabilized integrase proteins (half-life of N-terminal Met-integrase was at least 3 h). Conversely, the substitution of N-terminal phenylalanine with other destabilizing residues retained the metabolic instability of integrase. These findings indicate that the HIV-1 integrase is a physiological substrate of the N-end rule. We discuss a possible functional similarity to the better understood turnover of the bacteriophage Mu transposase and functions of integrase instability to the maintenance and integrity of the host cell genome.  相似文献   

13.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway.  相似文献   

14.
15.
Jiang W  Wang S  Xiao M  Lin Y  Zhou L  Lei Q  Xiong Y  Guan KL  Zhao S 《Molecular cell》2011,43(1):33-44
Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased levels of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.  相似文献   

16.
Substrates of the N-end rule pathway are recognized by the Ubr1 E3 ubiquitin ligase through their destabilizing amino-terminal residues. Our previous work showed that the Ubr1 E3 and the Ufd4 E3 together target an internal degradation signal (degron) of the Mgt1 DNA repair protein. Ufd4 is an E3 enzyme of the ubiquitin-fusion degradation (UFD) pathway that recognizes an N-terminal ubiquitin moiety. Here we show that the RING-type Ubr1 E3 and the HECT-type Ufd4 E3 interact, both physically and functionally. Although Ubr1 can recognize and polyubiquitylate an N-end rule substrate in the absence of Ufd4, the Ubr1-Ufd4 complex is more processive in that it produces a longer substrate-linked polyubiquitin chain. Conversely, Ubr1 can function as a polyubiquitylation-enhancing component of the Ubr1-Ufd4 complex in its targeting of UFD substrates. We also found that Ubr1 can recognize the N-terminal ubiquitin moiety. These and related advances unify two proteolytic systems that have been studied separately for two decades.  相似文献   

17.
The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB+1, to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.  相似文献   

18.
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function.  相似文献   

19.
The recognition component of the N-end rule pathway.   总被引:32,自引:10,他引:32       下载免费PDF全文
B Bartel  I Wünning    A Varshavsky 《The EMBO journal》1990,9(10):3179-3189
The N-end rule-based degradation signal, which targets a protein for ubiquitin-dependent proteolysis, comprises a destabilizing amino-terminal residue and a specific internal lysine residue. We report the isolation and functional analysis of a gene (UBR1) for the N-end recognizing protein of the yeast Saccharomyces cerevisiae. UBR1 encodes a approximately 225 kd protein with no significant sequence similarities to other known proteins. Null ubr1 mutants are viable but are unable to degrade the substrates of the N-end rule pathway. These mutants are partially defective in sporulation and grow slightly more slowly than their wild-type counterparts. The UBR1 protein specifically binds in vitro to proteins bearing amino-terminal residues that are destabilizing according to the N-end rule, but does not bind to otherwise identical proteins bearing stabilizing amino-terminal residues.  相似文献   

20.
The N‐end rule relates the regulation of the in vivo half‐life of a protein to the identity of its N‐terminal residue. Degradation signals (degrons) that are targeted by the N‐end rule pathway include a set called N‐degrons. The main determinant of an N‐degron is a destabilizing N‐terminal residue of a protein. In eukaryotes, the N‐end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N‐end rule and the Arg/N‐end rule pathways. The Ac/N‐end rule pathway targets proteins containing Nα‐terminally acetylated (Nt‐acetylated) residues. The Arg/N‐end rule pathway recognizes unacetylated N‐terminal residues and involves N‐terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt‐acetylated. Thus, most proteins harbor a specific degradation signal, termed AcN‐degron, from the moment of their birth. Specific N‐end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N‐degrons include methionine‐aminopeptidases, caspases, calpains, Nt‐acetylases, Nt‐amidases, arginyl‐transferases, and leucyl‐transferases. Regulated degradation of specific proteins by the N‐end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation, and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号