首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Below-ground carbon (C) production and nitrogen (N) flows in the root-zone of barley supplied with high or low amounts of N-fertilizer were investigated. Interest was focused on the effect of the level of N-fertilizer on the production of root-derived C and on gross immobilization (i) and gross mineralization (m) rates. The plants were grown for 46 days in a sandy loam soil. Principles of pool dilution and changes in 15N pool abundances were used in conjunction with mathematical modelling to calculate the flows of N. N was applied at a high or a low rate, as (15NH4)2SO4 solution (17.11 atom% 15N excess), before sowing. Nitrification was inhibited by using nitrapyrin (N-Serve). Pots were sampled four or five times during the experimental period, i.e. 0, 22, 30, 38 and 46 days after germination. On the three last sampling occasions, samples were also collected from pots in a growth chamber with 14C-labelled atmosphere.The release of 14C, measured as the proportion of the total 14C translocated below ground, was higher in the high-N treatment, but the differences between treatments were small. Our results were not conclusive in demonstrating that high-N levels stimulate the decomposition and microbial utilization of root-released materials. However, the internal circulation of soil-N, calculated N fluxes (m), which were in accordance with C mineralization rates and amounts of unlabelled N found in the plants (PU), suggested that the decomposition of native soil organic matter was hampered in the high-N treatment. Apparently, towards the end of the experimental period, microorganisms in the low-N treatment used C from soil organic matter to a greater extent than C they used from root released material, presumably because lower amounts of mineral N were available to microorganisms in the low-N treatment. Immobilization of N appeared to be soil driven (organisms decomposing soil organic matter account for the N demand) at low-N and root-driven (organisms decomposing roots and root-derived C account for the N demand) at high-N.Abbreviations AU Ammonium N-unlabelled - AL Ammonium N-labelled - AT Ammonium N-labelled and unlabelled (total) - NU Nitrate N-unlabelled - OU Organic N-unlabelled - OL Organic N-labelled - OT Organic N-total - PU Plant N-unlabelled (shoots and roots) - PL Plant N-labelled (shoots and roots) - PT Plant N-total (shoots and roots) - SL Sink or source of N-labelled - S Source or sink of N, mainly to and from the outer part of the cylinder - SU Sink or source of N-unlabelled - m Mineralization rate - i Immobilization rate - ua Uptake of ammonium - un Uptake of nitrate - la Loss of ammonium.  相似文献   

2.
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61 mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously 14C-labelled CO2, 14C was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated 14C was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of 14C-labelled root material and 14C remaining in soil) was greater with no N-supply (19% of net assimilated 14C) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated 14C below ground and the release of 14C from growing roots was relatively small.  相似文献   

3.
A pot experiment was conducted in a 14C-labelled atmosphere to study the influence of living plants on organic-N mineralization. The soil organic matter had been labelled, by means of a 200-days incubation, with 15N. The influence of the carbon input from the roots on the formation of microbial biomass was evaluated by using two different light intensities (I). Mineralization of 15N-labelled soil N was examined by following its fate in both the soil biomass and the plants. Less dry matter accumulated in shoots and roots at the lower light intensity. Furthermore, in all the plant-soil compartments examined, with the exception of rhizosphere respiration, the proportion of net assimilated 14C was lower in the low-I treatment than in the high-I treatment. The lower rates of 14C and 15N incorporation into the soil biomass were associated with less root-derived 14C. During the chamber period (14CO2-atmosphere), mineralized amounts of 15N (measured as plant uptake of 15N) were small and represented about 6.8 to 7.8% of the initial amount of organic 15N in the soil. Amounts of unlabelled N found in the plants, as a percentage of total soil N, were 2.5 to 3.3%. The low availability of labelled N to microorganisms was the result of its stabilization during the 210 days of soil incubation. Differences in carbon supply resulted in different rates of N mineralization which is consistent with the hypothesis that roots induce N mineralization. N mineralization was higher in the high-I treatment. On the other hand, the rate of mineralization of unlabelled stable soil N was lower than labelled soil 15N which was stabilized. The amounts of 15N mineralized in planted soil during the chamber period (43 days) which were comparable with those mineralized in unplanted soil incubated for 210 days, also suggested that living plants increased the turnover rate of soil organic matter.  相似文献   

4.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

5.
An annual cereal, barley, and a perennial grass ley, meadow fescue, were grown in field lysimeters in Sweden and fertilized with 12 and 20g Ca(NO3)2-N m−2 yr−1, respectively. Isotope-labeled (15N) fertilizer was added during year 1 of the study, whereafter similar amounts of unlabeled N were added during years 2 and 3. The grass ley lysimeters were ploughed after the growing season of year 3 and sown with barley during year 4. The barley harvest in year 1 removed 59% of the added fertilizer N, while the fertilizer N export by two meadow fescue harvests in year 1 was 65%. The labeled N export decreased rapidly after year 1, especially in the barley, but increased slightly after ploughing of the grass ley. The microbial biomass, measured with the chloroform fumigation method, incorporated a maximum of 1.4–1.7% of the labeled N during the first seven weeks after application. Later on, the incorporation stabilized at less than 1% in both cropping systems. The susceptibility of the residual labeled N to mineralization was evaluated three years after application by means of long-term laboratory incubations. The curves of cumulative mineralized N were described by a two-component first-order regression model that differentiated between an available and a more recalcitrant fraction of potentially mineralizable N. There was no difference in the amounts of potentially mineralizable N between the cropping systems. The labeled N comprised 5 and 2% of the amounts of potentially mineralizable N in the available and more recalcitrant fraction, respectively. The mineralization rate constants for the labeled N were almost twice as high as for the total potentially mineralizable N. The available fraction of the total potentially mineralizable N was 12%, while twice that proportion of the labeled N was available. It was concluded that the short-term ley did not differ from the annual crop with respect to the early disposition of the fertilizer N and the behaviour of the residual organic N.  相似文献   

6.
The 15N isotope dilution technique and the N difference method were used to estimate N2 fixation by clover growing in a mixture with ryegrass, in a field experiment and a controlled environment experiment. Values obtained using N difference were approximately 25% lower than those estimated using 15N isotope dilution. In the field experiment there was a measured N benefit to grass growing with clover, equivalent to 42.7 kgN ha-1. The grass in the mixture had a lower atom %15N content and a higher N content than grass in a monoculture; therefore values for N2 fixation were different depending on choice of control plant i.e. monoculture or mixture grass. In the controlled environment experiment there were no significant differences between either the atom %15N contents or the N contents of monoculture grass and grass growing in a mixture with clover. It is concluded that there is a long term indirect transfer of N from clover to associated grass which can lead to errors in estimates of N2 fixation.  相似文献   

7.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   

8.
In a mass balance of 15N-labelled nitrate added to soil grown with pea or barley, denitrification estimates using the acetylene-inhibition technique were compared with unaccounted for 15N. During the growth season of 1989, which was drier than average, N losses due to denitrification estimated by the acetylene-inhibition technique were negligible. A substantial amount of fertilizer N was unaccounted for by the 15N mass balance, especially in the pea plots. The loss took place during the period of grain-filling in which no leaching occurred, and was accompanied by a decrease in 15N content of the plants. Volatilization of ammonia from the aerial parts of the plants is a possible explanation of the observed loss. An estimation of denitrification relying only on the 15N mass balance would have resulted in an overestimation of denitrification.  相似文献   

9.
Summary The leaf and root nitrate reductase activities were measured in 7 day-old barley seedlings by anoxic nitrite accumulation in darkness, during 48h after the transfer from a N-starved medium to a 1.5 mM K15NO3 medium. Thisin situ nitrate reduction was compared with the15N incorporation in the reduced N fraction of the whole seedlings.The nitrate reduction integrated fromin situ measurements was lower than the reduced15N accumulation. The rootin situ nitrate reductase activity seemed to account for only the third of the real root nitrate reduction, which may have been responsible for the overall underestimation. This discrepancy was partly explained by the ability of the root to reduce nitrite in an anoxic environment.These results suggest that, after correction of thein situ estimation of the nitrate reduction. the roots contribute to about 50% of the total assimilation.  相似文献   

10.
The effect of defoliation on the deposition of carbon (C) and nitrogen (N) and the contribution of reserves and current assimilates to the use of C and N in expanding leaf tissue of severely defoliated perennial ryegrass (Lolium perenne L.) was assessed with a new material element approach. This included 13C/12C-and 15N/14N-steady-state labelling of all post-defoliation assimilated C and N, analysis of tissue expansion and displacement in the growth zone, and investigation of the spatial and temporal changes in substrate and label incorporation in the expanding elements prior to and after defoliation. The relationship between elemental expansion and C deposition was not altered by defoliation, but total C deposition in the growth zone was decreased due to decreased expansion of tissue at advanced developmental stages and a shortening of the growth zone. The N deposition per unit expansion was increased following defoliation, suggesting that N supply did not limit expansion. Transition from reserve- to current assimilation-derived growth was rapid (<1 d for carbohydrates and approximately 2 d for N), more rapid than suggested by label incorporation in growth zone biomass. The N deposition was highest near the leaf base, where cell division rates are greatest, whereas carbohydrate deposition was highest near the location of most active cell expansion. The contribution of reserve-derived relative to current assimilation-derived carbohydrates (or N) to deposition was very similar for elements at different stages of expansion  相似文献   

11.
The occurrence of nitrogen isotope discrimination with absorption and assimilation of nitrate (NO3) and ammonium (NH4+) was investigated using two genotypes of barley, Hordeum vulgare L. cv. Steptoe and Az12 : Az70, the latter of which lacks the characterized nitrate reductase isozymes. Plants were grown under two situations: a closed system with limited nitrogen or an open system with unlimited nitrogen, to elucidate the conditions and processes that influence discrimination. There was no discrimination observed for Az12 : Az70 when supplied with limited nitrogen. Discrimination was observed for Steptoe seedlings at high external NO3 concentrations, but not with low NO3 when assimilation is probably rapid and complete. The same pattern was observed for Steptoe when NH4+ was supplied; indicating that for both nitrogen forms discrimination is dependent upon the presence of the assimilatory enzyme and the external concentration. The implications of this study are that both internal (assimilatory enzyme distribution) and external (source concentration) factors may have a larger impact on tissue δ 15N than the form of nitrogen utilized. This suggests that tissue δ 15N may not always be a reliable indicator of a plant's integrated nitrogen nutrition.  相似文献   

12.
Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from 15N-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed in unplanted and planted plots and related to their chemical composition. In the top 10 cm of unplanted plots, inorganic N was immobilized after barley residue incorporation, whereas the inorganic N pool was increased during the initial 30 days after incorporation (DAI) of pea residues. Initial net mineralization of N was highly correlated to the concentrations of soluble C and N and the lignin: N ratio of residues. The contribution of residue-derived N to the inorganic N pool was at its maximum 30 DAI (10–55%) and declined to on average 5% after 3 years of decomposition.Residual organic labelled N in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During the 1–3 year period, residual organic labelled N from different residues declined at similar rates, mean decay constant: 0.18 yr-1. After 3 years, 45% of the barley and on average 32% of the pea residue N were present as soil organic N. The proportion of residue N remaining in the soil after 3 years of decomposition was most strongly correlated with the total and soluble N concentrations in the residue. The ratio (% inorganic N derived from residues): (% organic N derived from residues) was used as a measure of the rate residue N stabilization. From initial values of 3–7 the ratios declined to on average 1.9 and 1.6 after 2 and 3 yrs, respectively, indicating that a major part of the residue N was stabilized after 2 years of decomposition. Even though the largest proportion of residue N stabilized after 3 years was found for barley, the largest amount of residue N stabilized was found with incorporation of pea residues, since much more N was incorporated with these residues.In planted plots and after one year of decomposition, 7% of the pea and 5% of the barley residue N were recovered in perennial ryegrass (Lolium perenne L.) shoots. After 2 years the cumulative recovery of residue N in ryegrass shoots and roots was 14% for pea and 15% for barley residue N. The total uptake of non-labelled soil N after 2 years of growth was similar in the two residue treatments, but the amount of soil N taken up in each growth period varied between the treatments, apparently because the soil N immobilized during initial decomposition of residues was remineralized later in the barley than in the pea residue treatment. Balances were established for the amounts of barley and mature pea residue N remaining in the 0–10 cm soil layer and taken up in ryegrass after 2 years of decomposition. About 24% of the barley and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil-plant system.  相似文献   

13.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH glutamate dehydrogenase (EC 1.4.1.2) - GS glutamine synthetase (EC 6.3.1.2) - RuBP ribulose 1,5-bisphosphate  相似文献   

14.
The seasonal course of nitrogen uptake, incorporation and remobilization in different shoot components of winter oilseed rape (Brassica napus L.) was studied under field conditions including three rates of 15N labelled nitrogen application (0, 100 or 200 kg N ha-1) and two irrigation treatments (rainfed or watered at a deficit of 20 mm). The total amount of irrigation water applied was 260 mm, split over 13 occasions in a 7-week-period ranging from 1 week before onset of flowering until 4 weeks after flowering.Nitrogen application and irrigation increased plant growth and nitrogen accumulation. Irrespective of N and irrigation treatment more than 50% of total shoot N was present in the stem when flowering started. At the end of flowering, pod walls were the main N store containing about 30–40% of shoot N. The quantities of N remobilized from stems and pod walls amounted in all treatments to about 70% of the N present in these organs at mid-flowering. At harvest, stem and pod walls each contained about 10% of total shoot N, the remaining 80% being incorporated into seeds. The main component contributing to the response of seed N accumulation to nitrogen application and irrigation was pods in axillary racemes. Up to 20 kg N ha-1, corresponding to about 10% of final shoot N content, was lost from the plants by leaf drop.Irrigation increased the recovery at harvest of applied N from 30% to about 50%, while the level of N application did not affect the N recovery. 15N labelled (fertilizer derived) nitrogen constituted a greater proportion of the N content in old leaves than in young leaves and increased with age in the former, but not in the latter. Relative to soil N, fertilizer derived N also contributed more to the N content of vegetative than to that of reproductive shoot components. Small net changes in shoot N content after flowering reflected a balance between N import and export, leading to continuous dilution of 15N labelled N with unlabelled N.  相似文献   

15.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

16.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

17.
15N-labelled ammonium nitrate was applied to spring barley growing on a Cambisol soil in western Switzerland. Immobilization, plant uptake and disappearance of inorganic nitrogen were followed at frequent intervals. Fertilizer nitrogen disappeared shortly after its application, mainly through immobilization by soil microorganisms and absorption by the crop. Some of the added nitrogen was probably denitrified as a result of humid conditions during the first days after fertilizer application. At the end of the growing season, 31% of the added nitrogen was recovered from the aerial barley plants, and 56% was immobilized by microorganisms. Most of the fertilizer nitrogen not used by the crop was immobilized in the upper 0–30 cm soil layer. This prevented downward movement of nitrate and limited nitrogen losses. Fertilizer efficiency was mainly determined by the competition between crop uptake and microbial immobilization. Careful consideration of the time of fertilization, taking into account plant growth and weather conditions, can result in an increase in fertilizer efficiency and minimal pollution.  相似文献   

18.
15N labelled (NH4)2SO4 was applied to barley at 5 g N m−2 (50 kg N ha−1) in microplots at sowing to study the timing of the N losses and the contribution of soil and fertilizer N to the plant. Water treatments included rainfed and irrigation at 45–50 mm deficit beginning in the spring. Recovery of15N in the plant increased to a maximum of about 20% within 91 days after sowing (DAS 91) and then remained constant. Approximately 16% (0.8 g N m−2) of the fertilizer was in the stem and leaves at DAS 91 and this N was subsequently redistributed to the head. At maturity, approximately 75% of the15N assimilated by the tops was recovered in the grain. Soil N contributed 3.6 g N m−2 to the head; 2.2 g N m−2 was remobilized from the stem and leaves, and the balance, approximately 1.4 g N m−2, was taken up from the soil between DAS 69 to 91. Effects of irrigation treatments on N accumulation were not significant. Residual15N fertilizer in the soil decreased with time from sowing, and at maturity 40% of the applied N was recovered in the surface 0.15 m.15N movement to depth was limited and less than 5% of the fertilizer was recovered below 0.15 m. Irrigation had no effect on the15N recovery at depth. Total recovery of the15N varied between 60 and 67% and implies that 33–40% was lost from the soil-plant system. The total recovery in the soil and plant was not affected by time or irrigation in the interval DAS 39 to 134. Losses occurred before DAS 39 when crop uptake of N was small and soil mineral N content was high. There was an apparent loss of 1.9 g fertilizer N m−2 (i.e. 38% of that applied) between DAS 1 and 15. This loss occurred before crop emergence when rainfall provided conditions suitable for denitrification.  相似文献   

19.
Pinarosa Avato 《Planta》1984,162(6):487-494
Experimental evidence for a membranebound microsomal ester synthetase from Bonus barley primary leaves is reported. The results are consistent with at least two mechanisms for the synthesis of barley wax esters: an acyl-CoA-fattyalcohol-transacylase-type reaction and an apparent direct esterification of alcohols with fatty acids. Biosynthesis of wax esters was not specific with regard to the chain length of the tested alcohols. The microsomal preparation readily catalyzed the esterification of C16-, C18-, C22- or C24-labelled alcohols with fatty acids of endogenous origin. Exogenous long-chain alcohols were exclusively incorporated into the alkyl moieties of the esters. Addition of ATP, CoA and-or free fatty acids was not effective in stimulating or depressing the esterifying activity of the microsomal fraction. Partial solubilization of the ester synthetase was obtained using phosphate-buffered saline.Abbreviations P pellet - PBS phosphate-buffered saline - S supernatant - SDS sodium dodecyl sulphate  相似文献   

20.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号