首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.  相似文献   

2.
J. M. Sommer  A. Newton 《Genetics》1991,129(3):623-630
A pseudoreversion analysis was used to examine the role of cell division genes in polar morphogenesis in Caulobacter crescentus. Extragenic suppressors of temperature sensitive mutations in pleC, a pleiotropic gene required for cell motility, formation of polar phi CbK bacteriophage receptors, and stalk formation, were isolated. These suppressors, which restored motility at 37 degrees C, simultaneously conferred a cold sensitive cell division phenotype and they were mapped to the three new cell division genes divJ, divL and divK. The cold-sensitive mutations in divL, and to a lesser extent divJ, exhibited a relatively narrow range of suppression. The cold-sensitive cell division mutation in divK, by contrast, suppressed all pleC mutations examined and behaved as a classical bypass suppressor. The direct role of this cell division gene in the regulation of motility is suggested by the observation that divK341 mapped to the same locus as pleD301, a pleiotropic mutation that prevents loss of motility and stalk formation. These results provide strong evidence that the cell division and developmental pathways are interconnected and they support our earlier conclusion that cell division is required for the regulation of polar morphogenesis and differentiation in C. crescentus.  相似文献   

3.
Stalk synthesis in Caulobacter crescentus is a developmentally controlled and spatially restricted event that requires the synthesis of peptidoglycan at the stalk-cell body junction. We show that the β-lactam antibiotic mecillinam prevents stalk synthesis by inhibiting stalk elongation. In addition, mecillinam causes an increase in the diameter of the stalk at the stalk-cell body junction. We describe two mutations that confer resistance to mecillinam and that prevent stalk elongation. These mutations are probably allelic, and they map to a locus previously not associated with stalk synthesis.  相似文献   

4.
5.
B. Ely  T. W. Ely 《Genetics》1989,123(4):649-654
To facilitate the mapping of transposon insertion mutations in Caulobacter crescentus, we have used pulsed field gel electrophoresis to construct a detailed physical and genetic map of the C. crescentus genome. Restriction fragments were generated by DraI, AseI, or SpeI which cleave the C. crescentus 40, 13, and 26 times, respectively, and Tn5 insertions were used to align the restriction fragments generated by each of the enzymes. The utility of the resulting map was demonstrated by determining the chromosomal locations of a collection of flagellar mutations. As a result of this study, we were able to identify ten new flagellar genes at various locations on the chromosome. Thus, at least 48 genes are required for the assembly of a functional flagellum in C. crescentus.  相似文献   

6.
ABSTRACT: Naegleria spp. are widely distributed free-living amebas, but one species in the genus, N. fowleri , causes acute fulminant primary amebic meningoencephalitis in humans and other animals. Thus, it is important to differentiate N. fowleri from the rest in the genus of Naegleria , and to develop tools for the detection of intra-specific genetic variations. In this study, one isolate each of N. australiensis, N. gruberi, N. jadini , and N. lovaniensis and 22 isolates of N. fowleri were characterized at the internal transcribed spacers (ITS) and mitochondrial small subunit rRNA (mtSSU rRNA) gene. The mtSSU rRNA primers designed amplified DNA of all isolates, with distinct sequences obtained from all species examined. In contrast, the ITS primers only amplified DNA from N. lovaniensis and N. fowleri , with minor sequence differences between the two. Three genotypes of N. fowleri were found among the isolates analyzed in both the mtSSU rRNA gene and ITS. The extent of sequence variation was greater in the mtSSU rRNA gene, but the ITS had the advantage of length polymorphism. These data should be useful in the development of molecular tools for rapid species differentiation and genotyping of Naegleria spp.  相似文献   

7.
Genetic data suggest that the oligotrophic freshwater bacterium Caulobacter crescentus metabolizes D-xylose through a pathway yielding alpha-ketoglutarate, comparable to the recently described L-arabinose degradation pathway of Azospirillum brasilense. Enzymes of the C. crescentus pathway, including an NAD(+)-dependent xylose dehydrogenase, are encoded in the xylose-inducible xylXABCD operon (CC0823-CC0819).  相似文献   

8.
9.
10.
Measuring the chemotactic response of Borrelia burgdorferi, the bacterial species that causes Lyme disease, is relatively more difficult than measuring that of other bacteria. Because these spirochetes have long generation times, enumerating cells that swim up a capillary tube containing an attractant by using colony counts is impractical. Furthermore, direct counts with a Petroff-Hausser chamber is problematic, as this method has a low throughput and necessitates a high cell density; the latter can lead to misinterpretation of results when assaying for specific attractants. Only rabbit serum and tick saliva have been reported to be chemoattractants for B. burgdorferi. These complex biological mixtures are limited in their utility for studying chemotaxis on a molecular level. Here we present a modified capillary tube chemotaxis assay for B. burgdorferi that enumerates cells by flow cytometry. Initial studies identified N-acetylglucosamine as a chemoattractant. The assay was then optimized with respect to cell concentration, incubation time, motility buffer composition, and growth phase. Besides N-acetylglucosamine, glucosamine, glucosamine dimers (chitosan), glutamate, and glucose also elicited significant chemoattractant responses, although the response obtained with glucose was weak and variable. Serine and glycine were nonchemotactic. To further validate and to exploit the use of this assay, a previously described nonchemotactic cheA2 mutant was shown to be nonchemotactic by this assay; it also regained the wild-type phenotype when complemented in trans. This is the first report that identifies specific chemical attractants for B. burgdorferi and the use of flow cytometry for spirochete enumeration. The method should also be useful for assaying chemotaxis for other slow-growing prokaryotic species and in specific environments in nature.  相似文献   

11.
12.
水稻(Oryza sativa)是我国最主要的粮食作物之一, 其穗部形态直接影响着水稻产量和稻米品质。在秋光和七山占构建的重组自交系群体中发现了1个散穗突变体材料sp (spreading panicle), 田间表现为穗部一次枝梗向外延伸, 与穗轴夹角增大, 且向四周散开, 故暂命名为散穗突变体sp。与野生型相比, 突变体sp穗重、每穗粒重、千粒重、粒宽以及粒厚均极显著减少, 推测SP可能是1个参与调控穗部形态建成和颖花发育的基因。遗传分析表明, 该性状受1个显性核基因控制。利用sp与02428构建的F2群体进行基因定位, 将该基因定位在4号染色体长臂端, 位于E3和RM17578之间的62.9 kb区域内。该结果将为SP基因的图位克隆和揭示其作用机理奠定基础。  相似文献   

13.
The dimorphic bacterium Caulobacter crescentus has evolved marked phenotypic changes during its 50-year history of culture in the laboratory environment, providing an excellent system for the study of natural selection and phenotypic microevolution in prokaryotes. Combining whole-genome sequencing with classical molecular genetic tools, we have comprehensively mapped a set of polymorphisms underlying multiple derived phenotypes, several of which arose independently in separate strain lineages. The genetic basis of phenotypic differences in growth rate, mucoidy, adhesion, sedimentation, phage susceptibility, and stationary-phase survival between C. crescentus strain CB15 and its derivative NA1000 is determined by coding, regulatory, and insertion/deletion polymorphisms at five chromosomal loci. This study evidences multiple genetic mechanisms of bacterial evolution as driven by selection for growth and survival in a new selective environment and identifies a common polymorphic locus, zwf, between lab-adapted C. crescentus and clinical isolates of Pseudomonas aeruginosa that have adapted to a human host during chronic infection.Colonization of new environments or changes in resource availability, predatory regime, or climate can drive adaptive evolution. Determining the genetic basis of these changes informs our understanding of the evolution of diversity and the nature of selection. Domestication of crop plants, adaptive radiations, and in-host evolution during chronic microbial infection are characterized by the evolution of a suite of phenotypes that are advantageous in the new environment. Recent work has successfully identified several of the polymorphisms responsible for this type of adaptive evolution in a variety of species (3, 7, 11, 12, 15, 22, 25, 35-37). With comparative genome sequencing emerging as a powerful tool for identifying genetic polymorphism (5, 14, 23), these studies are becoming faster and easier. Still, large genome sizes and countless sequence differences between individuals, isolates, strains, and species have made comprehensive analyses intractable.Upon isolation and introduction into the laboratory, model research organisms experience extreme environmental changes, with associated selection pressures. Indeed, adaptation to life in captivity has been observed in a wide range of domesticated and model research organisms (2) and in zoo populations of endangered species (31). Many phenotypes that evolve in these nonnative environments do so repeatedly and become common features of human-cultured, -raised, or -cultivated organisms (2), providing evidence of positive selection. Likewise, the aquatic bacterium Caulobacter crescentus has evolved marked phenotypic changes during the 50 years it has been cultured in the laboratory environment. At least six phenotypic differences (Fig. (Fig.1)1) between two closely related strains (NA1000 and CB15) derived from the same common ancestor have evolved over decades of laboratory cultivation. It is presumed that these phenotypes evolved in response to the dynamic culture conditions and associated selection pressures experienced by bacteria in the laboratory environment. However, the extent of genetic divergence between these strains was uncharacterized, and it was not known whether the phenotypes could be explained by a few single nucleotide polymorphisms (SNPs), insertions/deletions, or genome rearrangements or by the accumulation of many mutations, each with a small contribution to particular phenotypes. In an effort to comprehensively characterize their divergence, we identified the genetic basis of all known phenotypic differences between two laboratory strains (NA1000 and CB15) of C. crescentus.Open in a separate windowFIG. 1.Evolved phenotypic differences between CB15 (Crosson2) and NA1000 (Crosson1). (A) Caulobacter cells divide asymmetrically to yield a swarmer and a stalked cell, which are mixed in culture. NA1000 stalked and predivisional cells (light gray) pellet less efficiently than swarmer cells (dark gray), allowing them to be physically separated. Synchrony capacity is quantified by calculating the proportion of cultured cells remaining in suspension. Error bars are ±standard errors of the mean (SEM). (B) When patched and grown on high-sugar media, NA1000 colonies develop a mucoid morphology, while CB15 colonies do not. (C) The transducing phage φCR30 efficiently infects and lyses CB15 cells, resulting in clear plaques, while infection of NA1000 with the same phage lysate results in fewer plaques that are visually turbid. (D) Holdfast-mediated attachment to a surface can be measured using a crystal violet assay. CB15 cells attach, resulting in robust staining, while NA1000 exhibits negligible adherence. (E) Upon continued aeration and incubation of stationary-phase Caulobacter cultures, NA1000 (▪) loses viability more rapidly than CB15 (○). Error bars are ±SEM. (F) In glucose minimal medium, NA1000 generation time is 20% shorter than that of CB15. Error bars are ±SEM.Our study revealed 11 coding, noncoding, and insertion/deletion polymorphisms between these two strains, five of which completely account for the evolved differences between the strains. The results presented herein provide insight into prokaryotic evolution driven by selection for growth and survival in a research laboratory and demonstrate the utility of combining whole-genome sequencing and alignment with molecular genetic tools to reveal the genetic basis of multiple derived phenotypes. Our work demonstrates that rapid adaptation of C. crescentus to the laboratory environment occurred in both strain lineages and is characterized by relatively few genetic changes, including nonsynonymous mutation, noncoding regulatory changes, acquisition of new genes, and inactivation of existing genes, each with a large phenotypic effect.  相似文献   

14.
15.
通过对水稻 4号染色体一段 32 3kb的序列测定和分析 ,在其中 56kb的区域内发现了一个由 7个编码二氢黄酮醇还原酶 (DFR)类似蛋白基因组成的基因簇。这 7个基因在基因簇中串联排列 ,每个基因都由 6个外显子和 5个内含子组成。这 7个基因的预测蛋白质序列都和DFR以及BANYULS蛋白序列类似。DFR和BANYULS都是植物次生代谢类黄酮醇生物合成途径中的结构基因 ,它们的缺失或突变都会造成植物花色素合成代谢的不正常。RT PCR实验证明这 7个基因在水稻的 5个组织中表达不同。文中讨论了这 7个基因的结构和功能特性以及它们的进化关系。  相似文献   

16.
In this paper we report the isolation, characterization and genetic analysis of several C. crescentus mutants altered in membrane lipid synthesis. One of these, a fatty acid bradytroph, AE6002, was shown to be due to a mutation in the fatA gene. In addition to the presence of the fatA506 mutation, this strain was found to contain two other mutations, one of which caused the production of a water-soluble brown-orange pigment (pigA) and another which caused formation of helical cells (hclA). Expression of the latter two phenotypes required complex media and both were repressed by glucose. However, the lesions were mapped to loci that are separated by a substantial distance. The hclA and the fatA genes mapped close together, possibly implying that comutation had occurred in AE6002. Data are presented that allow the unambiguous identification of a second Fat gene (fatB) in C. crescentus. The map position of another mutation in membrane lipid biogenesis, the glycerol-3-PO4 auxotroph gpsA505, was also determined. During this study the flaZ gene was fine-mapped and the positions of proC and rif changed from the previously reported location.  相似文献   

17.
L. Wang  L. K. Romana    P. R. Reeves 《Genetics》1992,130(3):429-443
Salmonella enterica is highly polymorphic for the O antigen, a surface polysaccharide that is subject to intense selection by the host immune system. This polymorphism is used for serotyping Salmonella isolates. The genes encoding O antigen biosynthesis are located in the rfb gene cluster. We report here the cloning and sequence of the 19-kb rfb region from strain M32 (serovar anatum, group E1) and compare it with that of strain LT2 (serovar typhimurium, group B). Genes for biosynthetic pathways common to both strains are conserved and have very similar sequences. In contrast, the five genes for CDP-abequose synthesis, present in strain LT2, are absent in strain M32; three open reading frames (ORFs) of strain LT2, thought to include genes for transferases, are not present in strain M32 but are replaced by three different ORFs with little or low level of similarity. Both rfb gene clusters are low in G + C content, indicating that they were transferred from a common ancestral species with low G + C content to S. enterica relatively recently (in the evolutionary sense). We discuss the recombination and lateral transfer events which may have been involved in the evolution of the polymorphism.  相似文献   

18.
19.
Vässin H  Campos-Ortega JA 《Genetics》1987,116(3):433-445
We report here the results of a genetic analysis of the gene Delta (Dl) of Drosophila melanogaster. Dl has been mapped to the band 92A2, on the basis of two pieces of evidence: (1) this band is the common breakpoint of several chromosomal aberrations associated with Dl mutations and (2) recombination mapping of alleles of five different lethal complementation groups that are uncovered by Df( 3R)Dl(FX3) (breakpoints at 91F11; 92A3). Dl was found to map most distally of all five complementation groups. The analysis of a large number of Dl alleles demonstrates the considerable genetic and functional complexity of Dl. Three types of Dl alleles are distinguishable. Most alleles behave as amorphic or hypomorphic recessive embryonic lethal alleles, which in addition cause various defects in heterozygosity over the wild-type allele. The defects are due to haplo-insufficient expression of the locus and can be suppressed by a duplication of the wild-type allele. The second class is comprised of three alleles with antimorphic expression. The phenotype of these alleles can only be reduced, rather than suppressed, by a duplication of the wild-type allele. The third group is comprised of three visible, predominantly hypomorphic alleles with an antimorphic component of phenotypic expression. The pattern of interallelic complementation is complex. On the one hand, there is a group of hypomorphic, fully penetrant embryonic lethal alleles which complement each other. On the other hand, most alleles, including all amorphic alleles, are viable over the visible ones; alleles of antimorphic expression, however, are lethal over visible alleles. These results are compatible with a rather complex genetic organization of the Dl locus.  相似文献   

20.
Genetic and physical analyses of Caulobacter crescentus trp genes.   总被引:1,自引:15,他引:1       下载免费PDF全文
Caulobacter crescentus trp mutants were identified from a collection of auxotrophs. Precursor feeding experiments, accumulation studies, and complementation experiments resulted in the identification of six genes corresponding to trpA, trpB, trpC, trpD, trpE, and trpF. Genetic mapping experiments demonstrated that the trp genes were in two clusters, trpCDE and trpFBA, and a 5.4-kilobase restriction fragment from the C. crescentus chromosome was isolated that contained the trpFBA gene cluster. Complementation experiments with clones containing the 5.4-kilobase fragment indicated that trpF was expressed in Escherichia coli and that all three genes were expressed in Pseudomonas putida. This expression was lost in both organisms when the pBR322 tet gene promoter was inactivated, indicating that all three genes were transcribed in the same orientation from the tet promoter. Thus, the C. crescentus promoters do not seem to be expressed in E. coli or P. putida. Complementation of the C. crescentus trp mutants indicated that the tet promoter was not necessary for expression in C. crescentus and suggested that at least two native promoters were present for expression of the trpF, trpB, and trpA genes. Taken together, these results indicate that C. crescentus promoters may have structures that are significantly different from the promoters of other gram-negative species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号