首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of D1 and D2 dopaminergic agonists and antagonists on the electrically-evoked release of gamma-[3H] aminobutyric acid (3H-GABA) have been studied on rat prefrontal cortex slices. The major part of the electrically-evoked release of 3H-GABA appeared to be Ca++ dependent since a 62% decrease was observed when calcium was removed from the superfusion medium. Two specific D2 dopaminergic agonists, RU 24926 (10(-7) M) and lisuride (10(-6) M), respectively induced a 32% and a 50% inhibition of the electrically-evoked release of 3H-GABA. The selective D2 dopaminergic antagonists sulpiride (10(-5) M) totally abolished the effect of RU 24926 and partially abolished the effect of lisuride. The selective D1 agonist SKF 38393 (10(-5) M) did not affect 3H-GABA release. These results suggest that in the rat prefrontal cortex in vitro, the dopaminergic modulation of 3H-GABA release is mediated through D2 but not D1 receptors. The activation of D2 dopaminergic receptors induces an inhibition of the electrically-evoked release of 3H-GABA.  相似文献   

2.
The release of gamma-[3H]aminobutyric acid ([3H]GABA) newly synthesized from [3H]glutamine was estimated in the superior colliculus of ketamine-anesthetized rats superfused via a push-pull cannula. A significant amount of [3H]GABA was spontaneously released in the superior colliculus (582 +/- 49 pCi/10 min). A major part of the large K(+)-evoked increase of the [3H]GABA release was Ca2+ dependent. When neuronal activity of the substantia nigra was enhanced by nigral application of K+ (30 mM) or bicuculline (10(-4) M), a persistent increase of the collicular [3H]GABA release was observed (60 and 80%, respectively). Conversely, when nigral activity was reduced by nigral application of GABA (10(-4) M) or superfusion with a Ca(2+)-free medium, a sustained decrease of the collicular [3H]GABA release was observed (-30 and -40%, respectively). Following the nigral application of a selective D2-receptor agonist. RU 24926 (10(-6) M), for 30 min in 6-hydroxydopamine-lesioned rats, a phasic increase (60%) of the collicular [3H]GABA release was detected. This effect could result from an activation of nigrocollicular GABAergic neurons by D2-receptor stimulation, because nigral activity and collicular release of [3H]GABA changed in a parallel direction.  相似文献   

3.
A technique has been developed to measure 3H-GABA not only in tissues but also in medium of slices of the rat substantia nigra (SN) incubated for 15 min with 3H-glutamine. The quantity of 3H-GABA in tissues was about 30 to 35 times that released in the medium. Nevertheless, the amount of the 3H-transmitter spontaneously released was about 10 to 15 times the blank value. GAD activity in the SN was decreased by 40 and 80% respectively ten days after the kainic acid lesion of the ipsilateral striatum or hemitransection. These effects were associated with parallel reductions in the amounts of 3H-GABA accumulated in tissues and released in medium. The spontaneous release of newly synthesized 3H-GABA was increased in absence of calcium and reduced with an excess of calcium (10?2M). Tetrodotoxin (10?5, 5.10?6M) reduced by 40% the spontaneous release of 3H-GABA. These various effects were not associated with significant change in the total accumulation of 3H-GABA in tissues + medium. Finally depolarization of the slices with potassium (30 mM) increased the release of 3H-GABA (300%). This effect was abolished in absence of calcium and was not associated with a significant change in the amount of 3H-GABA accumulated in tissues.  相似文献   

4.
It has been shown in experiments on rat cortex slices preincubated with 3H-GABA that chlorodiazepoxide (10(-6), 3.10(-5) M) does not change basal and electric stimulation-induced release of the label. It has been also shown that it does not eliminate the autoinhibitory effect of GABA on electric stimulation-induced release of 3H-GABA. However, harmane and some other (but not all) derivatives given at the same concentrations increase 3H-GABA release induced by electric stimulation and abolish the inhibitory effect of GABA without changing or slightly raising spontaneous release of 3H-GABA. It is concluded that harmane enhances the electrically stimulated release of the transmitter by GABAergic axons whatever the effect on benzodiazepine-binding areas of GABA receptors.  相似文献   

5.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

6.
We studied the effect of antiprogesterone RU 486 on spontaneous uterine contractility and PGI2 release with human myometrial strips superfused "in vitro". A decrease of PGI2 release into the superfusion medium was observed after 20 min superfusion. The inhibition was dose-dependent and reversible. After 20 min washing with tyrode medium without RU 486, the uterine strips recovered their initial rate of release. R5020, a progesterone agonist, did not affect PGI2 release nor dexamethasone and testosterone. Parallel to the decrease of PGI2 observed during RU 486 superfusion, the uterine spontaneous contraction frequency decreased, while the amplitude and duration of contractions increased. The alteration of uterine contractility was also rapid, dose-dependent and reversible. Modification of uterine strip spontaneous contractility, similar to those induced by RU 486, were also observed with superfusions of R5020 at concentrations as low as 10(-9)M, dexamethasone (10(-8)M), but not with superfusions of testosterone. These observations are not in favour of a progesterone-receptor mediated effect of RU 486 in our model. The mechanism of action may be related to the antiprogesterone specific structure i.e. the bulky substituent at the C-11 position. The RU 486 effect on uterine strip contractility, mimicked by other steroids, could point to a non-specific lipid/membrane interaction. However, the fact that testosterone did not affect motility, may indicate a possible specificity of steroids having a 3 oxo pregnene structure.  相似文献   

7.
A mechanism underlying the effects of neuromodulators on long-term changes in the efficacy of excitatory and inhibitory inputs to dopaminergic and inhibitory cells of the substantia nigra and ventral tegmental area is suggested. According to this mechanism, activation of Gi/0 protein-coupled dopamine D2 autoreceptors and opioid kappa (mu) receptors on dopaminergic (inhibitory) cells promotes the LTD of excitatory inputs to these cells and decrease in their activity. Activation of Gq/11 protein-coupled alpha1 adrenoreceptors, muscarinic M1, neurokinin NK3 (alpha1, M3, NK1, serotonin 5-HT2) receptors on dopaminergic (inhibitory) cells as well as activation of Gs protein-coupled D1 receptors on inhibitory cells promotes the LTP of excitatory inputs to these cells and increase in their activity. Augmenting (lowering) GABA release can be provided by activation of presynaptic D1 and M3 receptors (mu, 5-HT1, and adenosine A1) receptors. Increase (decrease) in GABA concentration due to modulation of inhibitory cell activity and/or GABA release will promote the induction of LTD (LTP) of excitatory inputs to target dopamine cells. The model agree with known experimental data describing the involvement of neuromodulators in modification of dopamine cell activity and dopamine release. The suggested model can be useful in understanding the operation of neuronal networks, which include the basal ganglia.  相似文献   

8.
1. 3H-gamma-Aminobutyric acid (GABA) release elicited by a depolarizing K+ stimulus or by noradrenergic transmitter was examined in rat pineals in vitro. 2. The release of 3H-GABA was detectable at a 20 mM K+ concentration in medium and increased steadily up to 80 mM K+. 3. In a Ca2+-free medium 3H-GABA release elicited by 30 mM K+, but not that elicited by 50 mM K+, became blunted. 4. Norepinephrine (NE; 10(-6)-10(-4) M) stimulated 3H-GABA release from rat pineal explants in a dose-dependent manner. 5. The activity of 10(-5) M NE on pineal GABA release was suppressed by equimolecular amounts of prazosin or phentolamine (alpha 1- and alpha 1/alpha 2-adrenoceptor blockers, respectively) and was unaffected by propranolol (beta-adrenoceptor blocker). 6. The alpha 1-adrenoceptor agonist phenylephrine (10(-7)-10(-5) M) and the beta-adrenoceptor agonist isoproterenol (10(-5) M) mimicked the GABA releasing activity of NE, while 10(-7) M isoproterenol failed to affect it; the alpha 2-adrenoceptor agonist clonidine (10(-7)-10(-5) M) did not modify 3H-GABA release. 7. The addition of 10(-4) M GABA or of the GABA transaminase inhibitor gamma-acetylenic GABA or aminooxyacetic acid inhibited the melatonin content and/or release to the medium in rat pineal organotypic cultures. 8. GABA at concentrations of 10(-5) M or greater partially inhibited the NE-induced increase in melatonin production by pineal explants. 9. The depressant effect of GABA on melatonin production was inhibited by the GABA type A receptor antagonist bicuculline; bicuculline alone increased the pineal melatonin content. Baclofen, a GABA type B receptor agonist, did not affect the pineal melatonin content or release. 10. The decrease in serotonin (5-HT) content of rat pineal explants brought about by NE was not modified by GABA; GABA by itself increased 5-HT levels. 11. These results indicate that (a) GABA is released from rat pineals by a depolarizing stimulus of K+ through a mechanism which is partially Ca2+ dependent; (b) NE releases rat pineal GABA via interaction with alpha 1-adrenoceptors; (c) GABA inhibits melatonin production in vitro via interaction with GABA type A receptor sites; and (d) GABA's effect on NE-induced melatonin release does not correlate with the lack of effect on the NE-induced decrease in pineal 5-HT content.  相似文献   

9.
A superfusion system was used to study the effects of neuroexcitatory amino acids upon spontaneous and depolarization-evoked release of exogenously taken up and newly synthesized [3H]dopamine by rat striatal slices. Neither l-glutamate nor other aminoacids such as l-aspartate and d-glutamate (5 × 10?5 M) modified the spontaneous release of exogenous [3H]dopamine from rat striatal slices. In contrast, these neuroexcitatory aminoacids did potentiate spontaneous release of striatal [3H]dopamine newly synthesized from [3H]tyrosine. A different pattern of effects emerged when depolarization-evoked release of dopamine was studied. Only l-glutamate (5 × 10?6-1 × 10?4 M) potentiated dopamine release under these experimental conditions in a rather specific and stereoselective manner. In addition, similar results were obtained regardless of whether depolarization-induced release of exogenous or newly synthesized [3H]dopamine was studied. The effect of l-glutamate on depolarization-induced release depended both upon the degree of neuronal depolarization and upon the presence of external Ca2+ in the superfusion medium and it was blocked by l-glutamate diethylester. Furthermore, this effect of l-glutamate seemed quite specific with regard to regional localization within the brain as it was only demonstrated in slices from striatum and not in slices from olfactory tubercle or hippocampus. It is suggested that during depolarization a Ca2+-dependent event occurs at the striatal membrane level which changes the sensitivity of the dopamine release process to neuroexcitatory aminoacids in such a way as to render it relatively more specific and stereoselective towards l-glutamate stimulation. The findings reported have led us to propose that l-glutamic acid could play a role as a neuromodulator of dopaminergic transmission in the rat corpus striatum.  相似文献   

10.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

11.
Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1-1000 μM), cocaine (0.1-300 μM) or morphine (0.1-100 μM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1-1000 μM) had little effect. Following repeated exposure to methamphetamine (10 μM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1-300 μM) or morphine (10 and 100 μM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 μM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse.  相似文献   

12.
Excitotoxic lesion of the ventral hippocampus in neonatal rats is a putative animal model of schizophrenia with characteristic developmental abnormalities in dopaminergic neurotransmission and prefrontal cortical functions. Converging evidence also points to the involvement of the central cholinergic system in neuropsychiatric disorders. These two neurotransmitter systems are interlinked in the prefrontal cortex (PFC) where dopamine stimulates acetylcholine (ACh) release. In the present study, we investigated the role of dopamine in the developmental regulation of prefrontal cortical ACh release and the expression of nicotinic and muscarinic receptors in pre- and post-pubertal rats with neonatal ibotenic acid-induced lesions of the ventral hippocampus (NVH). In vivo microdialysis in the PFC revealed that systemic injections of the D(1)-like receptor agonist (+/-)-6-chloro-7,8-dihydroxy-1-phenyl2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) (2.5 and 5.0 mg/kg i.p.) caused significantly higher ACh release in post-pubertal NVH-lesioned animals (250 and 300% baseline for 2.5 and 5.0 mg/kg, respectively) compared with post-pubertal shams (150 and 220% baseline for 2.5 and 5.0 mg/kg, respectively). Most interestingly, while prefrontal cortical perfusion of SKF 81297 (100 and 250 microM) had no significant effect on ACh release in post-pubertal sham-operated animals, it significantly stimulated ACh release to approximately 250% baseline at both doses in post-pubertal NVH-lesioned animals. Receptor autoradiography demonstrated a significant and selective increase in M(1)-like receptor binding sites in the infralimbic area of the PFC in the post-pubertal NVH-lesioned animals. For all experiments, significant differences between sham and NVH-lesioned animals were observed only in post-pubertal rats. These results suggest a developmentally specific reorganization of the prefrontal cortical cholinergic system involving D(1)-like receptors in the NVH model.  相似文献   

13.
B Scatton 《Life sciences》1982,31(25):2883-2890
The relative involvement of D1 (cyclase linked) and D2 dopamine receptors in dopaminergic control of striatal cholinergic transmission has been investigated in the rat by comparing the effects of SKF 38393 and LY 141865 (which act as specific agonists at D1 and D2 dopamine receptors, respectively) on striatal acetylcholine and dopamine metabolite concentrations and on the potassium-evoked release of 3H-acetylcholine from rat striatal slices. LY 141865 given systemically produced a dose-dependent increase in acetylcholine concentrations and a concomitant reduction of homovanillic and dihydroxyphenylacetic acid levels in the striatum (ED50 0.1 mg/kg) whereas SKF 38393 (1–30 mg/kg) did not. SKF 38393 (30 mg/kg) also failed to modify the LY 141865 (1 mg/kg) induced alterations of striatal acetylcholine and dopamine metabolite levels when given concomitantly with the latter compound. In experiments in vitro, LY 141865 reduced (EC50 0.14 μM), whereas SKF 38393 (up to 100 μM) failed to affect, the potassium-evoked release of 3H-acetylcholine from striatal slices. When given concomitantly with LY 141865, SKF 38393 (10 μM) did not modify the ability of the former compound to diminish striatal 3H-acetylcholine release. Finally, SKF 38393 also failed to affect the release of striatal 3H-acetylcholine after chemical lesion of the nigro-striatal dopaminergic pathway. The present results provide evidence for the involvement of D2 but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission and indicate that D1 dopamine receptors do not exert any modulatory influence on D2 dopamine receptor mediated dopaminergic transmission.  相似文献   

14.
The effects of different concentrations of L-ascorbic acid (Asc) on Na+-dependent binding of 3H-GABA and 3H-DL-glutamic acid to rat brain cortical synaptosomes were studied. Asc, at a concentration nearly equal to brain extracellular one (3 X 10(-4) M), had no effect on specific and nonspecific 5H-GABA binding. At higher concentrations (10(-3) M) Asc strongly inhibited, and at lower concentrations (10(-6) M) considerably stimulated 3H-GABA binding. At a concentration of 10(-5)-10(-3) M Asc tended to decrease 3H-DL-glutamic acid binding.  相似文献   

15.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

16.
3H-GABA binding was studied in cortical membranes from cerebral cortex of handling-habituated and naive rats after the in vitro addition of Ro15-1788. At low concentrations (10(-8), 10(-9) M) Ro15-1788 increased the total number of low affinity 3H-GABA binding sites in brain tissue from naive rats but failed to modify 3H-GABA binding in tissue from handling-habituated ones. On the contrary, Ro15-1788 at higher concentrations (10(-5), 10(-6)M) decreased the total number of low affinity 3H-GABA binding sites in tissue from handling-habituated rats but failed to modify 3H-GABA binding in tissue from naive animals. Ro15-1788 (10(-7)M) failed to modify significantly low affinity 3H-GABA binding in membranes from both naive and handling-habituated rats. However, this concentration abolished the effect of beta-carbolines and diazepam on 3H-GABA binding in membranes from naive and handling-habituated rats, respectively. The changes in the affinity of 3H-GABA binding were inversely related to the changes in the number. The results suggest that: a) the action "in vitro" of Ro15-1788 on low affinity 3H-GABA binding depends from its concentration at the benzodiazepine recognition sites; b) the benzodiazepine recognition site has a modulatory role in the control of the function of GABA-ergic receptor. Our data might explain the conflicting results obtained with this compound "in vivo".  相似文献   

17.
The replication of several human and animal cancer cell lines is regulated in vitro and in vivo by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the hormonally active form of vitamin D3. We have examined the effects of concentrations of 1,25-(OH)2D3, which inhibit cellular replication, on the cell-cycle kinetics of a 1,25-(OH)2D3-responsive human breast cancer cell line, T 47D. After 6 or 7 days of treatment, a time period representing approximately five cell population doublings of control cultures, concentrations of 1,25-(OH)2D3 in the range 10(-9) M to 10(-6) M caused a time- and concentration-dependent decrease in cell numbers. Treatment of cells growing in charcoal-treated fetal calf serum with 10(-8) M 1,25-(OH)2D3 for 6 days reduced cell numbers to 49% +/- 9% (n = 9) of control, and this was associated with a marked increase in the proportion of cells in the G2 + M phase of the cell cycle from 9.7% +/- 0.5% (n = 11) to 19.6% +/- 2.3% (n = 9), significant by paired analysis (P less than 0.002). At higher concentrations of 1,25-(OH)2D3 (10(-7)-10(-6) M), there was a concentration-dependent decline in S phase and increases in both G0/G1 and G2 + M phase cells. Detailed analysis of the temporal changes in cell-cycle phase distribution following treatment with 2.5 X 10(-8) and 10(-7) M 1,25-(OH)2D3 showed an initial accumulation of cells in G0/G1 and depletion of S phase cells during the first 24 hr of treatment. This decline in S phase cells was not accompanied by a decline in % G2 + M indicating a transition delay in G2 or mitosis. At the lower dose these changes returned to control values at 48 hr and at later times were associated with a slight but consistent decline in G0/G1 phase and an increase in G2 + M. In contrast cells treated with 10(-7) M 1,25-(OH)2D3 had significantly elevated % G0/G1 cells at days 2 and 3, consistent with a transition delay through G1 phase. This was confirmed in stathmokinetic experiments which demonstrated an approximate sevenfold decrease in the rate of exit of cells from G0/G1 following 4 days of exposure to 10(-7) M 1,25-(OH)2D3. This accumulation of cells in G0/G1 was accompanied by a fall in % S phase cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In the present study, the ability of three direct GABA agonists, muscimol, THIP and SL 76002 to displace 3H-GABA binding from anterior pituitary and medio-basal hypothalamus membranes was evaluated. Further, the effect of both THIP and SL 76002 on baseline prolactin levels or after stimulation of hormone release with haloperidol has been also studied. Either muscimol, THIP or SL 76002 have shown to posses 7-, 7- and 3-fold higher affinity, respectively, for the central nervous system than for the anterior pituitary 3H-GABA binding sites. Moreover, THIP and SL 76002 have demonstrated to be respectively, 25- and 1000- fold less potent than muscimol in inhibiting 3H- GABA binding at the level of the anterior pituitary and about 25- and 2700- fold less potent at the level of the medio-basal hypothalamus. Under basal conditions, either THIP or SL 76002 were ineffective to reduce prolactin release. However, after stimulation of prolactin secretion through blockade of the dopaminergic neurotransmission with haloperidol (0.1 mg/kg), both THIP (10 mg/kg) and SL 76002 (200 mg/kg) significantly counteracted the neuroleptic-induced prolactin rise with a potency which is in line with their ability to inhibit 3H-GABA binding in the anterior pituitary. The present results indicate that both compounds inhibit prolactin release under specific experimental situations probably through a GABAergic mechanism. In view of the endocrine effects of these GABA-mimetic compounds, the possibility arises for an application of these type of drugs in clinical neuroendocrinology.  相似文献   

19.
Spontaneous prolactin release from the isolated rat anterior pituitary was inhibited by endothelin-1 in a dose-dependent manner (10(-8)-10(-6) M). Endothelin-3 also inhibited spontaneous prolactin release with an almost identical dose-response relationship as endothelin-1. These inhibitory effects were unaffected by application of a dopamine D2-receptor antagonist, YM-09151-2 (10(-7) M). Rat anterior and posterior pituitary glands were abundant in both endothelin-1 and endothelin-3, as compared with other regions of the brain. The present results suggest that endogenous endothelin-1 and endothelin-3 in the anterior and posterior pituitary are involved in the inhibitory regulation of prolactin secretion as autocrine or paracrine factors.  相似文献   

20.
《Life sciences》1987,41(14):1717-1723
The ergot derivatives, bromocriptine, lisuride and quinpirole (Ly-171555), activators of D-2 receptors, increased striatal acetylcholine (ACh) content by about 40% and induced a 30% inhibition of ACh evoked release from striatal slices, similar to the effects of the dopaminergic agonist apomorphine. These actions were a consequence of dopaminergic activation since they were antagonized by pretreatment with the neuroleptic agent, pimozide. In contrast, pretreatment with L-sulpiride (100 mg/kg), a specific antagonist for the D-2 dopaminergic receptor only, prevented the rise of ACh levels induced by apomorphine or quinpirole but did not interfere with the lisuride- or bromocriptine- induced ACh increases. Similarly, inhibition of the ACh evoked release produced by lisuride (3ωM) was prevented by pimozide (1mg/kg) but not by pretreatment with L-sulpiride. Addition of L-sulpiride (5ωM) to the Krebs solution had no effect on the inhibition of ACh-evoked release induced by lisuride, but a lower concentration (1ωM) antagonized the inhibition induced by quinpirole. Lisuride and bromocriptine responses were both insensitive to sulpiride. These results are discussed in terms of different interaction with the dopaminergic D-2 receptors by the drugs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号