首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of beta-casein (beta-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of beta-CN f7-14, f47-52, and f169-175 and kappa-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the beta-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC(50)s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC(50)s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin.  相似文献   

2.
Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified.  相似文献   

3.
Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.  相似文献   

4.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and β-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited β-galactosidase activity in excess of 1,000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and β-galactosidase genes exhibited β-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

5.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

6.
Marked changes in the specificity of hydrolysis of αs1-, β-, and κ-caseins by lactocepin III from Lactococcus lactis subsp. cremoris SK11 were found in humectant systems giving the equivalent water activity (aw) and salt concentration of cheddar cheese. Correlations were noted between certain peptides produced by the activity of lactocepin III in the humectant systems and peptides found in cheddar cheese. The stability of lactocepin III was compared with that of lactocepin I from L. lactis subsp. cremoris HP in the humectant systems at different pHs. Significant differences between the stability of each of the lactocepin types were evident. The relationship between stability and humectant type, aw, pH, and NaCl concentration was complex. Nevertheless, in those systems where aw, pH, and NaCl concentration were equivalent to those in cheddar cheese, lactocepin I was generally more stable than lactocepin III. It was concluded that differences in the specificity and/or stability of various lactocepin types are likely to persist in cheese itself and therefore potentially contribute to differences in the peptide composition of ripened cheese.  相似文献   

7.
Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5α derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, β-casein (β-CN) (f193-209) and αS1-casein (αS1-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10°C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards αS1-CN (f1-9) and β-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze β-CN (f193-209) and αS1-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides αS1-CN (f1-9), αS1-CN (f1-13), and αS1-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with β-CN (f193-209) and αS1-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.  相似文献   

8.
The lassi, fermented milks product containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus acidophilus NCDC-15 and the incubation period and simmering effect was also optimized for production of ACE-inhibitory peptides. The time–temperature combination for the heat treatment was optimized using RSM. The biological activity was measured in the supernatant of the fermented milk after centrifugation. The lowest IC50 values for the inhibition of angiotensin-converting enzyme (ACE) was found 28.9 ± 0.95 μg protein/ml in the supernatant of milk fermented by L. acidophilus and heated at 78 °C for 10 h. The fractions which showed the highest ACE-inhibitory indexes were further purified by different techniques including solid phase extraction, RP-HPLC and FPLC and the related peptides were identified by LC–MS/MS using the Ultimate 3000 nano HPLC system (Dionex) coupled to a 4000 Q TRAP electro-spray ionization mass spectrometry. The high ACE-inhibitory activity containing fractions of the milk fermented by L. acidophilus contained the sequences of b-casein (b-CN) fragment. The fraction-III showed minimum IC50 value i.e. 14.57 ± 0.72 μg/ml compared with fraction-I and fraction-II. Among these peptides 14 peptides have been identified from the fraction-I of the lassi prepared from L. acidophilus i.e. β-CN f47–56, β-CN f47–57, β-CN f199–209, β-CN f176–182, β-CN f176–183, β-CN f176–184, β-CN f1–7, β-CN f57–68, β-CN f166–175, β-CN f195–206, β-CN f195–207, β-CN f195–209, β-CN f94–106 and β-CN f169–176 showed partially or completely homology to that the milk protein bioactive peptides having ACE inhibitory. The two peptides KVLPVPQK (β-CN f169–176) and YQEPVLGPVRGPFPIIV (β-CN f193–209) have the same sequence as ACE inhibitory peptides (Maeno et al. in J Dairy Sci 79(8):1316–1321, 1996; Yamamoto et al. in J Dairy Sci 77:917–922, 1994b).  相似文献   

9.
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii.  相似文献   

10.
The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species.  相似文献   

11.
The procedure generally used for the isolation of extracellular, cell-associated proteinases of Lactococcus lactis species is based on the release of the proteinases by repeated incubation and washing of the cells in a Ca2+-free buffer. For L. lactis subsp. cremoris Wg2, as many as five incubations for 30 min at 29°C are needed in order to liberate 95% of the proteinase. Proteinase release was not affected by chloramphenicol, which indicates that release is not the result of protein synthesis during the incubations. Ca2+ inhibited, while ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) stimulated, proteinase release from the cells. The pH optimum for proteinase release ranged between 6.5 and 7.5, which was higher than the optimum pH of the proteinase measured for casein hydrolysis (i.e., 6.4). Treatment of cells with the serine proteinase inhibitor phenylmethylsulfonyl fluoride prior to the incubations in Ca2+-free buffer reduced the release of the proteinase by 70 to 80%. The residual proteinase remained cell associated but could be removed by the addition of active L. lactis subsp. cremoris Wg2 proteinase. This suggests that proteinase release from cells of L. lactis subsp. cremoris Wg2 is the result of autoproteolytic activity. From a comparison of the N-terminal amino acid sequence of the released proteinase with the complete amino acid sequence determined from the nucleotide sequence of the proteinase gene, a protein of 180 kilodaltons would be expected. However, a proteinase with a molecular weight of 165,000 was found, which indicated that further hydrolysis had occurred at the C terminus.  相似文献   

12.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

13.
Belonging to the subtilase family, the cell surface proteinase (CSP) PrtB of Lactobacillus delbrueckii subsp. bulgaricus differs from other CSPs synthesized by lactic acid bacteria. Expression of the prtB gene under its own promoter was shown to complement the proteinase-deficient strain MG1363 (PrtP PrtM) of Lactococcus lactis subsp. cremoris. Surprisingly, the maturation process of PrtB, unlike that of lactococcal CSP PrtPs, does not require a specific PrtM-like chaperone. The carboxy end of PrtB was previously shown to be different from the consensus anchoring region of other CSPs and exhibits an imperfect duplication of 59 amino acids with a high lysine content. By using a deletion strategy, the removal of the last 99 amino acids, including the degenerated anchoring signal (LPKKT), was found to be sufficient to release a part of the truncated PrtB into the culture medium and led to an increase in PrtB activity. This truncated PrtB is still active and enables L. lactis MG1363 to grow in milk supplemented with glucose. By contrast, deletion of the last 806 amino acids of PrtB led to the secretion of an inactive proteinase. Thus, the utmost carboxy end of PrtB is involved in attachment to the bacterial cell wall. Proteinase PrtB constitutes a powerful tool for cell surface display of heterologous proteins like antigens.  相似文献   

14.
During the ripening of Gouda-type cheese, two kinds of endopeptidases were found to participate in the degradation of αs1-CN(f1-23), a specific product from αs1-casein hydrolyzed by chymosin. One of the endopeptidases, lactic acid bacteria endopeptidase (LEP-II), which can recognize the size of its substrates, has already been purified and characterized (T. R. Yan, N. Azuma, S. Kaminogawa, and K. Yamauchi, Eur. J. Biochem. 163:259-265, 1987). The other endopeptidase, LEP-I, was purified to homogeneity by conventional chromatographic techniques from Streptococcus cremoris H61. The enzyme appeared to be monomeric, with an apparent molecular weight of 98,000, and its isoelectric point was 5.1. For the hydrolysis of αs1-CN(f1-23), the enzyme had an optimum pH and temperature of 7.0 to 7.5 and 40°C, respectively. Its activity was inhibited by such chelating agents as EDTA and 1,10-phenanthrolin, and it could be fully reactivated by Mn2+. Inhibitors specific for serine and thiol proteases had no effect on the protease activity. The enzyme showed a high affinity toward the Glu-Asn peptide bond of αs1-CN(f1-23) and αs1-CN(f91-100) but showed no hydrolysis activity toward αs1-CN(f1-52), αs1-CN(61-122), αs1-CN(136-196), αs1-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin. The Km and Vmax of LEP-I for αs1-CN(f1-23) were 14.2 pM and 139 U, respectively.  相似文献   

15.
The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth.  相似文献   

16.
Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A.  相似文献   

17.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

18.
An efficient method for genetic transformation of lactococci by electroporation is presented. Highly competent lactococci for electrotransformation were obtained by growing cells in media containing high concentrations of glycine and 0.5 M sucrose as the osmotic stabilizers. These cells could be stored at −85°C without loss of competence. With Lactococcus lactis subsp. cremoris BC101, a transformation frequency of 5.7 × 107 transformants per μg of pIL253 DNA was obtained, which represents 5% of the surviving cells. All the lactococcal strains tested could be transformed by the present method.  相似文献   

19.
This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract.  相似文献   

20.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号