首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, controlling the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During early tooth development, TGF-beta inhibits proliferation of enamel organ epithelial cells but the underlying molecular mechanisms are largely unknown. Here we tested the hypothesis that antagonistic effects between Smad2 and Smad7 regulate TGF-beta signaling during tooth development. Attenuation of Smad2 gene expression resulted in significant advancement of embryonic tooth development with increased proliferation of enamel organ epithelial cells, while attenuation of Smad7 resulted in significant inhibition of embryonic tooth development with increased apoptotic activity within enamel organ epithelium. These findings suggest that different Smads may have differential activities in regulating TGF-beta-mediated cell proliferation and death. Furthermore, functional haploinsufficiency of Smad2, but not Smad3, altered TGF-beta-mediated tooth development. The results indicate that Smads are critical factors in orchestrating TGF-beta-mediated gene regulation during embryonic tooth development. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.  相似文献   

2.
Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.  相似文献   

3.
4.
5.
The glucocorticoid receptor (GR) plays a crucial role in epidermal morphogenesis during embryonic development, as demonstrated by analyzing genetically modified mouse models of GR gain- and loss-of-function. Eyelid formation constitutes a useful model to study epithelial development, as it requires coordinated regulation of keratinocyte proliferation, apoptosis and migration. We have analyzed this biological process in GR(-/-) embryos during ontogeny. Our data demonstrate that GR deficiency results in delayed and impaired eyelid closure, as illustrated by increased keratinocyte proliferation and apoptosis along with impaired differentiation in GR(-/-) eyelid epithelial cells. These defects are due, at least in part, to the lack of antagonism between GR and epidermal growth factor receptor (EGFR) signaling, causing sustained activation of the MAPK/AP-1 pathway and the upregulation of keratin K6 at embryonic stage E18.5. Additionally, we demonstrate that GR regulates epithelial cell migration in vitro by interfering with EGFR-mediated signaling. Overall, GR/EGFR antagonism appears as a major mechanism regulating ocular epithelial development.  相似文献   

6.
The final shape of the molar tooth crown is thought to be regulated by the transient epithelial signaling centers in the cusp tips, the secondary enamel knots (SEKs), which are believed to disappear after initiation of the cusp growth. We investigated the developmental fate of the signaling center using the recently characterized Slit1 enamel knot marker as a lineage tracer during morphogenesis of the first molar and crown calcification in the mouse. In situ hybridization analysis showed that after Fgf4 downregulation in the SEK, Slit1 expression persisted in the deep compartment of the knot. After the histological disappearance of the SEK, Slit1 expression was evident in a novel epithelial cell cluster, which we call the tertiary enamel knot (TEK) next to the enamel-free area (EFA)-epithelium at the cusp tips. In embryonic tooth, Slit1 was also observed in the stratum intermedium (SI) and stellate reticulum cells between the parallel SEKs correlating to the area where the inner enamel epithelium cells do not proliferate. After birth, the expression of Slit1 persisted in the SI cells of the transverse connecting lophs of the parallel cusps above the EFA-cells. These results demonstrate the presence of a novel putative signaling center, the TEK, in the calcifying tooth. Moreover, our results suggest that Slit1 signaling may be involved in the regulation of molar tooth shape by regulating epithelial cell proliferation and formation of EFA of the crown.  相似文献   

7.
Epithelial cell migration and morphogenesis require dynamic remodeling of the actin cytoskeleton and cell-cell adhesion complexes. Numerous studies in cell culture and in model organisms have demonstrated the small GTPase Rac to be a critical regulator of these processes; however, little is known about Rac function in the morphogenic movements that drive epithelial tube formation. Here, we use the embryonic salivary glands of Drosophila to understand the role of Rac in epithelial tube morphogenesis. We show that inhibition of Rac function, either through loss of function mutations or dominant-negative mutations, disrupts salivary gland invagination and posterior migration. In contrast, constitutive activation of Rac induces motile behavior and subsequent cell death. We further show that Rac regulation of salivary gland morphogenesis occurs through modulation of cell-cell adhesion mediated by the E-cadherin/beta-catenin complex and that shibire, the Drosophila homolog of dynamin, functions downstream of Rac in regulating beta-catenin localization during gland morphogenesis. Our results demonstrate that regulation of cadherin-based adherens junctions by Rac is critical for salivary gland morphogenesis and that this regulation occurs through dynamin-mediated endocytosis.  相似文献   

8.
Midkine (MK) is the first cloned gene in a new family of heparin- binding growth/differentiation factors involved in the regulation of growth and differentiation. We have analyzed the expression of MK mRNA and protein during tooth development in mouse embryos and studied the regulation of MK expression and the biological effects of MK protein in organ cultures. MK expression was restricted and preferential in the tooth area as compared to the rest of the developing maxillary and mandibular processes suggesting specific functions for MK during tooth morphogenesis. MK mRNA and protein were expressed during all stages of tooth formation (initiation, morphogenesis, and cell differentiation), and shifts of expression were observed between the epithelial and mesenchymal tissue components. However, the expression of mRNA and protein showed marked differences at some stages suggesting paracrine functions for MK. Tissue recombination experiments showed that MK gene and protein expression are regulated by epithelial-mesenchymal interactions, and, moreover, that dental tissue induces the ectopic expression of MK protein in non-dental tissue. The expression of MK gene and protein in the mandibular arch mesenchyme from the tooth region were stimulated by local application of retinoic acid in beads. Cell proliferation was inhibited in dental mesenchyme around the beads releasing MK, but this effect was modulated by simultaneous application of FGF-2. Morphogenesis and cell differentiation were inhibited in tooth germs cultured in the presence of neutralizing antibodies for MK, whereas the development of other organs (e.g., salivary gland, kidney) was unaffected. These results suggest important roles for MK in the molecular cascade that regulates tooth development.  相似文献   

9.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

10.
Bone morphogenetic protein (BMP) 4 plays very important roles in regulating developmental processes of many organs, including lung. Smad1 is one of the BMP receptor downstream signaling proteins that transduce BMP4 ligand signaling from cell surface to nucleus. The dynamic expression patterns of Smad1 in embryonic mouse lungs were examined using immunohistochemistry. Smad1 protein was predominantly detected in peripheral airway epithelial cells of early embryonic lung tissue [embryonic day 12.5 (E12.5)], whereas Smad1 protein expression in mesenchymal cells increased during mid-late gestation. Many Smad1-positive mesenchymal cells were localized adjacent to large airway epithelial cells and endothelial cells of blood vessels, which colocalized with a molecular marker of smooth muscle cells (alpha-smooth muscle actin). The biological function of Smad1 in early lung branching morphogenesis was then studied in our established E11.5 lung explant culture model. Reduction of endogenous Smad1 expression was achieved by adding a Smad1-specific antisense DNA oligonucleotide, causing approximately 20% reduction of lung epithelial branching. Furthermore, airway epithelial cell proliferation and differentiation were also inhibited when endogenous Smad1 expression was knocked down. Therefore, these data indicate that Smad1, acting as an intracellular BMP signaling pathway component, positively regulates early mouse embryonic lung branching morphogenesis.  相似文献   

11.
12.
The molecular basis of lung morphogenesis   总被引:35,自引:0,他引:35  
  相似文献   

13.
Transforming growth factors beta (TGF-beta) are known negative regulators of lung development, and excessive TGF-beta production has been noted in pulmonary hypoplasia associated with lung fibrosis. Inhibitory Smad7 was recently identified to antagonize TGF-beta family signaling by interfering with the activation of TGF-beta signal-transducing Smad complexes. To investigate whether Smad7 can regulate TGF-beta-induced inhibition of lung morphogenesis, ectopic overexpression of Smad7 was introduced into embryonic mouse lungs in culture using a recombinant adenovirus containing Smad7 cDNA. Although exogenous TGF-beta efficiently reduced epithelial lung branching morphogenesis in control virus-infected lung culture, TGF-beta-induced branching inhibition was abolished after epithelial transfer of the Smad7 gene into lungs in culture. Smad7 also prevented TGF-beta-mediated down-regulation of surfactant protein C gene expression, a marker of bronchial epithelial differentiation, in cultured embryonic lungs. Moreover, we found that Smad7 transgene expression blocked Smad2 phosphorylation induced by exogenous TGF-beta ligand in lung culture, indicating that Smad7 exerts its inhibitory effect on both lung growth and epithelial cell differentiation through modulation of TGF-beta pathway-restricted Smad activity. However, the above anti-TGF-beta signal transduction effects were not observed in cultured embryonic lungs with Smad6 adenoviral gene transfer, suggesting that Smad7 and Smad6 differentially regulate TGF-beta signaling in developing lungs. Our data therefore provide direct evidence that Smad7, but not Smad6, prevents TGF-beta-mediated inhibition of both lung branching morphogenesis and cytodifferentiation, establishing the mechanistic basis for Smad7 as a novel target to ameliorate aberrant TGF-beta signaling during lung development, injury, and repair.  相似文献   

14.
In vertebrates, Sonic hedgehog (Shh) and transforming growth factor-beta (TGF-beta) signaling pathways occur in an overlapping manner in many morphogenetic processes. In vitro data indicate that the two pathways may interact. Whether such interactions occur during embryonic development remains unknown. Using embryonic lung morphogenesis as a model, we generated transgenic mice in which exon 2 of the TbetaRII gene, which encodes the type II TGF-beta receptor, was deleted via a mesodermal-specific Cre. Mesodermal-specific deletion of TbetaRII (TbetaRII(Delta/Delta)) resulted in embryonic lethality. The lungs showed abnormalities in both number and shape of cartilage in trachea and bronchi. In the lung parenchyma, where epithelial-mesenchymal interactions are critical for normal development, deletion of mesenchymal TbetaRII caused abnormalities in epithelial morphogenesis. Failure in normal epithelial branching morphogenesis in the TbetaRII(Delta/Delta) lungs caused cystic airway malformations. Interruption of the TbetaRII locus in the lung mesenchyme increased mRNA for Patched and Gli-1, two downstream targets of Shh signaling, without alterations in Shh ligand levels produced in the epithelium. Therefore, we conclude that TbetaRII-mediated signaling in the lung mesenchyme modulates transduction of Shh signaling that originates from the epithelium. To our knowledge, this is the first in vivo evidence for a reciprocal and novel mode of cross-communication between Shh and TGF-beta pathways during embryonic development.  相似文献   

15.
Branching morphogenesis of many organs, including the embryonic lung, is a dynamic process in which growth factor mediated tyrosine kinase receptor activation is required, but must be tightly regulated to direct ramifications of the terminal branches. However, the specific regulators that modulate growth factor signaling downstream of the tyrosine kinase receptor remain to be determined. Herein, we demonstrate for the first time an important function for the intracellular protein tyrosine phosphatase Shp2 in directing embryonic lung epithelial morphogenesis. We show that Shp2 is specifically expressed in embryonic lung epithelial buds, and that loss of function by the suppression of Shp2 mRNA expression results in a 53% reduction in branching morphogenesis. Furthermore, by intra-tracheal microinjection of a catalytically inactive adenoviral Shp2 construct, we provide direct evidence that the catalytic activity of Shp2 is required for proper embryonic lung branch formation. We demonstrate that Shp2 activity is required for FGF10 induced endodermal budding. Furthermore, a loss of Shp2 catalytic activity in the embryonic lung was associated with a reduction in ERK phosphorylation and epithelial cell proliferation. However, epithelial cell differentiation was not affected. Our results show that the protein tyrosine phosphatase Shp2 plays an essential role in modulating growth factor mediated tyrosine kinase receptor activation in early embryonic lung branching morphogenesis.  相似文献   

16.
Craniofacial development provides a number of opportunities to investigate the cellular and molecular biology of morphogenesis, cytodifferentiation, tissue-specific extracellular matrix (ECM) formations, and biomineralization. Regulatory processes associated with mandibular morphogenesis and specifically tooth formation are being investigated by the identification of when and where molecular determinants such as cell adhesion molecules (CAMs), substrate adhesion molecules (SAMs), and tissue-specific structural gene products are expressed during sequential developmental stages. Based upon in vitro organotypic culture studies in serumless, chemically defined medium, instructive and permissive signaling has been found to be required for both mandibular and dental morphogenesis and cytodifferentiation. For example, intrinsic developmental instructions (autocrine and paracrine factors), independent of long-range hormonal or exogenous growth factors, mediate morphogenesis from the initiation of the dental lamina through crown and initial root stages of tooth development. This review summarizes recent results using experimental embryology, organ culture, recombinant DNA technology, and immunocytology to elucidate mechanisms responsive to instructive epithelial-mesenchymal interactions associated with mandibular morphogenesis, tooth positional information, and subsequent tooth crown and initial root development.  相似文献   

17.
Growth factors and tooth development   总被引:2,自引:0,他引:2  
The effects of various growth factors on tooth development were studied in organ cultures of mouse embryonic tooth germs. Transferrin was shown to be a necessary growth factor for early tooth morphogenesis. Transferrin was required for the development of bud- and early cap-staged teeth, and it was shown to be the only serum protein that was needed by early cap-staged teeth in organ culture. Promotion of tooth morphogenesis and dental cell differentiation was shown to be based on the stimulation of cell proliferation. The roles of polypeptide growth factors in tooth development were studied by adding these factors to the transferrin-containing chemically-defined culture medium which supports early tooth morphogenesis and cell differentiation. Fibroblast growth factor or platelet-derived growth factor did not affect cell proliferation or morphogenesis of tooth germs in culture. On the contrary, epidermal growth factor (EGF) stimulated cell proliferation in tooth explants, but at the same time inhibited tooth morphogenesis and dental cell differentiation. Autoradiographic localization of proliferating cells revealed that dental tissues responded to EGF with different proliferation rates. The responsiveness to EGF was stage-dependent, early cap-staged teeth were sensitive to EGF but late cap-staged and bell-staged teeth developed normally in the presence of EGF in the culture medium. The presence and distribution of receptors for both transferrin and EGF were studied in mouse embryonic teeth at various developmental stages by incubating freshly-separated tooth germs with 125Iodine-labeled transferrin or EGF, and then processing the tissues for autoradiography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mechanisms of ectodermal organogenesis   总被引:17,自引:0,他引:17  
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.  相似文献   

19.
Members of the transforming growth factor beta (TGF-beta) superfamily of signaling molecules are involved in the regulation of many developmental processes that involve the interaction between mesenchymal and epithelial tissues. Smad7 is a potent inhibitor of many members of the TGF-beta family, notably TGF-beta and activin. In this study, we show that embryonic overexpression of Smad7 in stratified epithelia using a keratin 5 promoter, results in severe morphogenetic defects in skin and teeth and leads to embryonic and perinatal lethality. To further analyze the functions of Smad7 in epithelial tissues of adult mice, we used an expression system that allowed a controlled overexpression of Smad7 in terms of both space and time. Skin defects in adult mice overexpressing Smad7 were characterized by hyper-proliferation and missing expression of early markers of keratinocyte differentiation. Upon Smad7-mediated blockade of TGF-beta superfamily signaling, ameloblasts failed to produce an enamel layer in incisor teeth. In addition, TGF-beta blockade in adult mice altered the pattern of thymic T cell differentiation and the number of thymic T cells was significantly reduced. This study shows that TGF-beta superfamily signaling is essential for development of hair, tooth and T-cells as well as differentiation and proliferation control in adult tissues.  相似文献   

20.
During craniofacial and mandibular development at least three interdependent processes become integrated: 1) regulation of time-dependent differential gene expression; 2) positional information resulting in pattern formations; and 3) morphogenesis. The present studies were designed to test the hypothesis that intrinsic and/or paracrine factors regulate the developmental program for embryonic mouse mandibular morphogenesis, histogenesis, and cytodifferentiation. Either E11 or E12 C57B110 (B10.A) strain mouse mandibular processes were cultured in serumless, chemically defined medium for periods up to 9 days in vitro. At selected stages of development 3H-thymidine incorporation into DNA was used to evaluate the mitotic labeling for selected tissue compartments. Macroscopic observations demonstrated that morphogenesis (shape/form) in vitro was comparable to that for in vivo controls. Histological results demonstrated that chondrogenesis, osteogenesis, tooth formation, tongue formation, lip formation, and epithelial differentiation with keratinization were expressed according to sequence, time, and positions comparable to those observed in controls. This experimental approach provided datasets to support the hypothesis that exogenous long-range factors are not required for embryonic mouse mandibular morphogenesis and further suggested that autocrine and/or paracrine factors mediate the timing and position of mandibular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号