首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ribosome undergoes significant conformational changes during elongation of a polypeptide chain, and these are correlated with structural changes of rRNAs. We tested 15 different oligonucleotides complementary to the selected, highly conserved seqences of rRNAs (L-rRNA, 5S rRNA and tRNA) important in protein biosynthesis. We carried out a reaction of binding Phe-tRNA to A site and a polymerization of polypeptide chains on the ribosomes converted either to pre- or to posttranslocational states. The inhibition of polymerization reaction by complementary oligonucleotides was high in all ribosomal states. The efficiency of inhibition of binding reaction was lower and more diverse than was the polypeptide elongation. We conclude that the selected oligonucleotides inhibit polypeptide synthesis with different effectivity, primarily depending on L-rRNA conformation within ribosome architecture.  相似文献   

2.
In both vertebrate and invertebrate cells, the 60-kDa Ro autoantigen is bound to small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the 60-kDa Ro protein is also complexed with a class of 5S rRNA precursors that contain internal mutations. Because these 5S rRNA precursors are processed inefficiently and degraded eventually, the Ro protein may function in a quality control pathway for 5S rRNA biosynthesis. We have investigated the sequence and secondary structure determinants in the mutant 5S rRNAs that confer binding by the 60-kDa Ro protein. The mutant 5S rRNAs fold to form an alternative helix that is required for recognition by the 60-kDa Ro protein. Mutations that disrupt the alternative helix eliminate Ro protein binding, whereas compensatory changes that restore the helix are bound efficiently by the Ro protein. When the structure of the mutant RNA was probed using dimethylsulfate and oligonucleotide-directed RNase H cleavage, the results were consistent with the formation of the alternative structure. The La protein, which is also complexed with the mutant 5S rRNA precursors, protects similar sequences from nuclease digestion as does the 60-kDa Ro protein. Thus, the binding sites for these two proteins are either nearby on the RNA, or the two proteins may be complexed through protein-protein interactions. When the human Ro protein is expressed in the yeast Saccharomyces cerevisiae, the protein binds wild-type 5S rRNA precursors, suggesting that a population of wild-type precursors also folds into the alternative structure.  相似文献   

3.
The concept of a minimal ribosomal RNA-containing ribosome, a structure with a minimal set of elements capable of providing protein biosynthesis, is essential for understanding this fundamental cellular process. Nematodes and trypanosomes have minimal mitochondrial rRNAs and detailed reconstructions of their secondary structures indicate that certain conserved helices have been lost in these taxa. In contrast, several recent studies on acariform mites have argued that minimal rRNAs may evolve via shortening of secondary structure elements but not the loss of these elements as shown for trypanosomes and nematodes. Based on extensive structural analysis of chelicerate arthropods, we demonstrate that extremely short rRNAs of acariform mites share certain structural modifications with nematodes and trypanosomes: loss of helices of the GTPase region and divergence in the evolutionarily conserved connecting loop between helices H1648 and H1764 of the large subunit rRNA. These highly concerted parallel modifications indicate that minimal rRNAs were generated under the strong selection that favored or tolerated reductions of helices in particular locations while maintaining the functionality of the rRNA molecules throughout evolution. We also discuss potential evolution of minimal rRNAs and atypical transfer RNAs.  相似文献   

4.
Eukaryotic rRNAs and snRNAs are decorated with abundant 2′-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2′-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.  相似文献   

5.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

6.
An heterologous complex was formed between E. coli protein L1 and P. vulgaris 23S RNA. We determined the primary structure of the RNA region which remained associated with protein L1 after RNase digestion of this complex. We also identified the loci of this RNA region which are highly susceptible to T1, S1 and Naja oxiana nuclease digestions respectively. By comparison of these results with those previously obtained with the homologous regions of E. coli and B. stearothermophilus 23S RNAs, we postulate a general structure for the protein L1 binding region of bacterial 23S RNA. Both mouse and human mit 16S rRNAs and Xenopus laevis and Tetrahymena 28S rRNAs contain a sequence similar to the E. coli 23s RNS region preceding the L1 binding site. The region of mit 16S rRNA which follows this sequence has a potential secondary structure bearing common features with the L1-associated region of bacterial 23S rRNA. The 5'-end region of the L11 mRNA also has several sequence potential secondary structures displaying striking homologies with the protein L1 binding region of 23S rRNA and this probably explains how protein L1 functions as a translational repressor. One of the L11 mRNA putative structures bears the features common to both the L1-associated region of bacterial 23S rRNA and the corresponding region of mit 16S rRNA.  相似文献   

7.
8.
A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.  相似文献   

9.
The 5'-exonuclease Rat1 degrades pre-rRNA spacer fragments and processes the 5'-ends of the 5.8S and 25S rRNAs. UV crosslinking revealed multiple Rat1-binding sites across the pre-rRNA, consistent with its known functions. The major 5.8S 5'-end is generated by Rat1 digestion of the internal transcribed spacer 1 (ITS1) spacer from cleavage site A(3). Processing from A(3) requires the 'A(3)-cluster' proteins, including Cic1, Erb1, Nop7, Nop12 and Nop15, which show interdependent pre-rRNA binding. Surprisingly, A(3)-cluster factors were not crosslinked close to site A(3), but bound sites around the 5.8S 3'- and 25S 5'-regions, which are base paired in mature ribosomes, and in the ITS2 spacer that separates these rRNAs. In contrast, Nop4, a protein required for endonucleolytic cleavage in ITS1, binds the pre-rRNA near the 5'-end of 5.8S. ITS2 was reported to undergo structural remodelling. In vivo chemical probing indicates that A(3)-cluster binding is required for this reorganization, potentially regulating the timing of processing. We predict that Nop4 and the A(3) cluster establish long-range interactions between the 5.8S and 25S rRNAs, which are subsequently maintained by ribosomal protein binding.  相似文献   

10.
The interaction of E. coli vacant ribosomes with acridine orange (AO) was studied, to obtain conformational information about rRNAs in ribosomes. Acridine orange binds to an RNA in two different modes: cooperative outside binding with stacking of bound AO's and intercalation between nucleotide bases. Free 16S and 23S rRNAs have almost identical affinities to AO. At 1 mM Mg2+, AO can achieve stacking binding on about 40% of rRNA phosphate groups. The number of stacking binding sites falls to about 1/3 in the 30S subunit in comparison with free 16S rRNA. In the 50S subunit, the number of stacking binding sites is only 1/5 in comparison with free 23S rRNA. Mg2+ ions are more inhibitory for the binding of AO to ribosomes than to free rRNAs. The strength of stacking binding appears to be more markedly reduced by Mg2+ in active ribosomes than in rRNAs. "Tight couple" 70S particles are less accessible for stacking binding than free subunits. The 30S subunits that have irreversibly lost the capability for 70S formation under low Mg2+ conditions have an affinity to AO that is very different from that of active 30S but similar to that of free rRNA, though the number of stacking binding sites is little changed by the inactivation. 70S and 30S ribosomes with stacking bound AO's have normal sedimentation constants, but the 50S subunits reversibly form aggregates.  相似文献   

11.
12.
We have tested a putative base-paired interaction between the conserved GT psi C sequence of tRNA and the conserved GAAC47 sequence of 5 S ribosomal RNA by in vitro protein synthesis using ribosomes containing deletions in this region of 5 S rRNA. Ribosomes reconstituted with 5 S rRNA possessing a single break between residues 41 and 42, deletion of residues 42-46, or deletion of residues 42-52 were tested for their ability to translate phage MS2 RNA. Initiator tRNA binding, aminoacyl-tRNA binding, ppGpp synthesis, and miscoding were also tested. All of the measured functions could be carried out by ribosomes carrying the deleted 5 S rRNAs. The sizes and relative amounts of the polypeptides synthesized by MS2 RNA-programmed ribosomes were identical whether or not the 5 S RNA contained deletions. Aminoacyl-tRNA binding and miscoding were essentially unaffected. Significant reduction in ApUpG (but not poly(A,U,G) or MS2 RNA)-directed fMet-tRNA binding and ppGpp synthesis were observed, particularly in the case of the larger (residues 42-52) deletion. We conclude that if tRNA and 5 S rRNA interact in this fashion, it is not an obligatory step in protein synthesis.  相似文献   

13.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

14.
There are regions in rRNA which are evolutionary conserved and exposed on ribosomal surface. We selected in plant material (Lupinus luteus) two of them: the alpha-sarcin domain of 26S rRNA (L-rRNA) and C loop of 5S rRNA, to be further investigated using antisense oligomers as research tools. We found inhibition of the model polypeptide biosynthesis (up to 80%) due to specific hybridization of oligomers addressed to alpha-sarcin domain and loop C. Based on our results we present the evidence for the key role played by these regions of rRNAs during protein biosynthesis in plant system. According to our hypothesis, conformational changes of these two regions are synchronised and cooperative during transition of pre- to post-translocation state of the ribosome. The correlation of structure and activity of rRNA domains in translation is shown.  相似文献   

15.
16.
Oxazolidinones are potent inhibitors of bacterial protein biosynthesis. Previous studies have demonstrated that this new class of antimicrobial agent blocks translation by inhibiting initiation complex formation, while post-initiation translation by polysomes and poly(U)-dependent translation is not a target for these compounds. We found that oxazolidinones inhibit translation of natural mRNA templates but have no significant effect on poly(A)-dependent translation. Here we show that various oxazolidinones inhibit ribosomal peptidyltransferase activity in the simple reaction of 70 S ribosomes using initiator-tRNA or N-protected CCA-Phe as a P-site substrate and puromycin as an A-site substrate. Steady-state kinetic analysis shows that oxazolidinones display a competitive inhibition pattern with respect to both the P-site and A-site substrates. This is consistent with a rapid equilibrium, ordered mechanism of the peptidyltransferase reaction, wherein binding of the A-site substrate can occur only after complex formation between peptidyltransferase and the P-site substrate. We propose that oxazolidinones inhibit bacterial protein biosynthesis by interfering with the binding of initiator fMet-tRNA(i)(Met) to the ribosomal peptidyltransferase P-site, which is vacant only prior to the formation of the first peptide bond.  相似文献   

17.
18.
Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections.  相似文献   

19.
A two-probe proximal chaperone detection system consisting of a species-specific capture probe for the microarray and a labeled, proximal chaperone probe for detection was recently described for direct detection of intact rRNAs from environmental samples on oligonucleotide arrays. In this study, we investigated the physical spacing and nucleotide mismatch tolerance between capture and proximal chaperone detector probes that are required to achieve species-specific 16S rRNA detection for the dissimilatory metal and sulfate reducer 16S rRNAs. Microarray specificity was deduced by analyzing signal intensities across replicate microarrays with a statistical analysis-of-variance model that accommodates well-to-well and slide-to-slide variations in microarray signal intensity. Chaperone detector probes located in immediate proximity to the capture probe resulted in detectable, nonspecific binding of nontarget rRNA, presumably due to base-stacking effects. Species-specific rRNA detection was achieved by using a 22-nt capture probe and a 15-nt detector probe separated by 10 to 14 nt along the primary sequence. Chaperone detector probes with up to three mismatched nucleotides still resulted in species-specific capture of 16S rRNAs. There was no obvious relationship between position or number of mismatches and within- or between-genus hybridization specificity. From these results, we conclude that relieving secondary structure is of principal concern for the successful capture and detection of 16S rRNAs on planar surfaces but that the sequence of the capture probe is more important than relieving secondary structure for achieving specific hybridization.  相似文献   

20.
A two-probe proximal chaperone detection system consisting of a species-specific capture probe for the microarray and a labeled, proximal chaperone probe for detection was recently described for direct detection of intact rRNAs from environmental samples on oligonucleotide arrays. In this study, we investigated the physical spacing and nucleotide mismatch tolerance between capture and proximal chaperone detector probes that are required to achieve species-specific 16S rRNA detection for the dissimilatory metal and sulfate reducer 16S rRNAs. Microarray specificity was deduced by analyzing signal intensities across replicate microarrays with a statistical analysis-of-variance model that accommodates well-to-well and slide-to-slide variations in microarray signal intensity. Chaperone detector probes located in immediate proximity to the capture probe resulted in detectable, nonspecific binding of nontarget rRNA, presumably due to base-stacking effects. Species-specific rRNA detection was achieved by using a 22-nt capture probe and a 15-nt detector probe separated by 10 to 14 nt along the primary sequence. Chaperone detector probes with up to three mismatched nucleotides still resulted in species-specific capture of 16S rRNAs. There was no obvious relationship between position or number of mismatches and within- or between-genus hybridization specificity. From these results, we conclude that relieving secondary structure is of principal concern for the successful capture and detection of 16S rRNAs on planar surfaces but that the sequence of the capture probe is more important than relieving secondary structure for achieving specific hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号