共查询到20条相似文献,搜索用时 9 毫秒
1.
Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3). 下载免费PDF全文
R A Goldbeck T D Dawes O Einarsdttir W H Woodruff D S Kliger 《Biophysical journal》1991,60(1):125-134
Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond. 相似文献
2.
3.
Time-resolved absorption and magnetic circular dichroism spectroscopy of cytochrome c3 from Desulfovibrio. 下载免费PDF全文
D B O''Connor R A Goldbeck J H Hazzard D S Kliger M A Cusanovich 《Biophysical journal》1993,65(4):1718-1726
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding. 相似文献
4.
5.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm. 相似文献
6.
The circular dichroism spectra of leghemoglobin a from the root nodules of soybean have been compared with those for sperm whale myoglobin in the fat- and near-ultraviolet and the Soret and visible regions of the spectrum. Circular dichroism spectra in the far-ultraviolet show that the leghemoglobins all have a high alpha-helix content (soybean leghemoglobin a, 55%) regardless of the nature of bound ligands and oxidation or spin state of the heme iron. The known sequence homologies with mammalian hemoglobins may therefore be reflected in conformational homologies as suggested by the x-ray studies of Vainshtein et al. ((1975) Nature (London) 254, 163-164) on lupin leghemoglobin. Removal of the heme moiety decreases helicity by only 9% for leghemoglobins, compared with 23% for myoglobin. This, the much smaller heme contribution to the near-ultraviolet circular dichroism than in myoglobin, and the greater accessibility of the heme moiety to aqueous solvent (Nicola et al. (1974), Proc. Aust. Biochem. Soc. 7, 21) suggest that the association between heme and protein is much weaker in leghemoglobins than in myoglobin. The aromatic Soret and visible circular dichroism spectra for all derivatives of leghemoglobin are opposite in sense to those for myoglobin, showing that the patterns of protein side chain contacts with the heme are different in the two classes of heme proteins. There is strong evidence that one of the two tryptophans whose identity and structural role in myoglobin is known, is present also in plant leghemoglobins, hydrogen-bonded and in a similar nonpolar environment whether heme is present or not. The above findings help to explain the remarkably high oxygen affinity and some other ligand-binding properties of leghemoglobins which differ from those of myoglobin. 相似文献
7.
A localized small structural change is converted to a higher order conformational change of protein and extends to a mesoscopic scale to induce a physiological function. To understand such features of protein, ultrafast dynamics of myoglobin (Mb) following photolysis of carbon monoxide were investigated. Recent results are summarized here with a stress on structural and vibrational energy relaxation. The core expansion of heme takes place within 2 ps but the out of plane displacement of the heme iron and the accompanying protein conformational change occur in 10 and 100 s of the picosecond regimes, respectively. Unexpectedly, it was found from UV resonance Raman spectra that Trp7 in the N-terminal region and Tyr151 in the C-terminal region undergo appreciable structural changes upon ligand binding-dissociation while Tyr104, Tyr146, and Trp14 do not. Because of the communication between the movements of these surface residues and the heme iron, the rate of spectral change of the iron-histidine (Fe- His) stretching band after CO photodissociation is influenced by the viscosity of solvent. Temporal changes of the anti-Stokes Raman intensity demonstrated immediate generation of vibrationally excited heme upon photodissociation and its decay with a time constant of 1-2 ps. 相似文献
8.
Circular dichroic spectra in the Soret region were obtained for the following cobalt-substituted hemoproteins: CoMb3, CoMbO2, CoMbNO, CoMb+, CoHb, CoHbO2, CoHbNO and CoHb+ and compared with the corresponding spectra of the native species to delineate the sensitivity of Soret circular dichroism to ligation, quaternary structures, metal ion substitution and its magnetic moment. Soret rotational strengths, R, were calculated, and dissymmetry ratios were used to reveal hidden transitions. The results indicate that Soret circular dichroism is sensitive to the metal ion, its oxidation state, ligation and local environment but neither to quaternary structural changes as proposed by Ferrone &; Topp (1975), nor to the magnetic moment of the metal ion as suggested by Li &; Johnson (1969). 相似文献
9.
10.
Reconstitution of myoglobin from apoprotein and heme, monitored by stopped-flow absorption, fluorescence and circular dichroism 总被引:1,自引:0,他引:1
The reconstitution reaction of ferric cyanomyoglobin from apomyoglobin and hemin dicyanide was investigated with a stopped-flow apparatus by the use of five kinds of probes; (a) Soret absorption, (b) fluorescence quenching of tryptophan, (c) far-ultraviolet CD, (d) near-ultraviolet CD, and (e) Soret CD. After mixing of apomyoglobulin with equimolar amounts of hemin dicyanide, the Soret absorption band was shifted to longer wavelengths within 10 ms. The shifted band kept its shape for a few seconds, and then gradually shifted to shorter wavelengths. A rate constant of the slow reaction was 1.1 x 10(-2) s-1. Time courses of fluorescence quenching followed a second-order reaction with a rate constant of 9 x 10(7) M-1 s-1. Far-ultraviolet CD recovered to the level of native state within the response time of an apparatus (= 64 ms). Near-ultraviolet CD and Soret CD changed with first-order rate constants of 5-30 s-1 and 5 x 10(-3) s-1 respectively. On the basis of the kinetic results we propose the following reconstitution pathway of myoglobin. Apomyoglobin has essentially a highly folded structure similar to myoglobin, but there are some differences in the secondary structure between them. In the first step, heme enters the pocket-like site of apomyoglobin and interacts with surrounding hydrophobic residues in the pocket, and then the interaction may give a complete ordered structure to the protein. Second, the tertiary structure of the heme pocket is partly constructed. Third, the iron-proximal His bond occurs, followed by the attainment of the final conformation. This sequence of the events shows that the polypeptide chain is entirely folded before the completion of three-dimensional structure of the heme pocket. The reconstitution pathway is fairly different from that of the alpha subunit of hemoglobin reported by Leutzinger and Beychok [Proc. Natl Acad. Sci. USA (1981) 78, 780-784], which described how a drastic recovery in helicity was observed on the heme-binding, and that the recovery is introduced by the formation of the heme pocket structure. The difference in the results found for the alpha subunit and myoglobin suggests a difference in conformation: in apomyoglobin most of the helices are arranged and folded around a helix core to form a compact structure as a whole, while in apo-alpha subunit some helices are not folded around the helix core. Helix D, which is absent in the alpha subunit, may play an important role in folding of the helices. 相似文献
11.
An UV absorption and CD study of intestinal fatty acid-binding protein is presented. Since there are only two Trp residues in the molecule, two single-Trp mutants were prepared to deconvolute their signals. The individual contribution of the eight Phe and four Tyr residues was not established; however, Phe global contribution is relatively free of interferences from the other chromophores and was observed directly. CD spectra showed that Phe vibronic structure was unusually sharp and seems to monitor very specific details in the three-dimensional structure. The global signal from Tyr was assigned only approximately due to band broadening and overlapping. At the upper end of the CD spectrum, strong positive (1)L(b) Trp transitions from Trp 82 and strong negative (1)L(b) Trp transitions from Trp 6 were observed. (1)L(a) transitions were overall weak, positive for Trp 82 and negative for Trp 6, nearly cancelling each other out in the final spectrum. The above assignment is of practical and fundamental interest to monitor folding, binding, and molecular dynamics down to microdomain resolution. The assignment of Trp bands allowed comparison with previous data from CRABP1, another member of the IFABP family with 28% identical residues. It was found that structural homology extends beyond sequence and tertiary fold to include optical properties of equivalent Trp residues in the structure. 相似文献
12.
Y A Sharonov A P Mineyev M A Livshitz N A Sharonova V B Zhurkin Y P Lysov 《Biophysics of structure and mechanism》1978,4(2):139-158
The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q00- and QV-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q00-band to the A-term in the QV-band. The evidneces are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the "hemoglobin-like" MCD, while the alkaline ferroperoxidase is characterized by the "myoglobin-like" MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoporteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at approximately 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at approximately 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-iron charge-transfer electronic transition which may be assigned as b( pi) leads to 3d. This charge-transfer band is strongly overlapped with usual B(pi --pi*) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves. 相似文献
13.
Yu. A. Sharonov A. P. Mineyev M. A. Livshitz N. A. Sharonova V. B. Zhurkin Yu. P. Lysov 《European biophysics journal : EBJ》1978,4(2):139-158
The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q
00- and Qv-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q
00-band to the A-term in the Q
v-band. The evidences are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the hemoglobin-like MCD, while the alkaline ferroperoxidase is characterized by the myoglobin-like MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoproteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-ion charge-transfer electronic transition which may be assigned as b() 3d. This charge-transfer band is strongly overlapped with usual B( - *) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves. 相似文献
14.
Picosecond resonance Raman evidence for unrelaxed heme in the (carbonmonoxy)myoglobin photoproduct 总被引:3,自引:0,他引:3
An actively and passively mode-locked Nd:YAG laser, producing 30-ps pulses of 1-mJ energy at 532 nm, has been used to photolyze (carbonmonoxy)myoglobin (MbCO) and generate its resonance Raman spectrum, which was recorded with a vidicon multichannel analyzer. The photoproduct spectrum was obtained by subtraction of the MbCO spectrum, obtained at lower incident power levels. Comparison with the spectrum of deoxyMb, obtained with the same apparatus, revealed frequency downshifts of approximately 4 cm-1, for bands at 1604, 1554, and 1542 cm-1, which are identified with porphyrin skeletal modes v10, v19, and v11. These frequencies are known to correlate inversely with the core size of the porphyrin ring, and the shifts imply a larger core size for the photoproduct than for deoxyMb. Similar shifts have been observed for the (carbonmonoxy)hemoglobin (HbCO) photoproduct; in that case, the shifts persist for longer than 20 ns, whereas they are absent in the MbCO photoproduct spectrum within 7 ns of photolysis. The unrelaxed state of the heme group region is therefore suggested to be maintained by protein forces, which relax more rapidly for Mb than Hb. This may reflect a tighter coupling in Hb of the out-of-plane movement of the Fe atom with the proximal histidine-containing F helix. 相似文献
15.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin. 相似文献
16.
17.
Two new double-headed protease inhibitors from black-eyed peas have amino acid compositions typical of the low molecular weight protease inhibitors from legume seeds. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 83 amino acid residues per monomer. Black-eyed pea trypsin inhibitor (BEPTI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 75 residues per monomer. The molar extinctions at 280 nm are 2770 for BEPCI and 3440 for BEPTI. The single tyrosyl residue is very inaccessible to solvent in native BEPCI and BEPTI at neutral pH and titrates anomalously with an apparent pK = 12. Ionization of tyrosine is complete in 13 hours above pH 12. No heterogeneity of the local environment of the tyrosyl residues in different subunits can be detected spectrophotometrically. The large number of cystine residues leads to an intense and complex near-ultraviolet CD spectrum with cystine contributions in the regions of 248 and 280 nm and tyrosine contributions at 233 and 280 nm. An intact disulfide structure is required for appearance of the tyrosyl CD bands. The inhibitors are unusually resistant to denaturation when compared with similar low molecular weight proteins of high disulfide content. All observations are consistent with a far more rigid structure for BEPCI and BEPTI than for a typical protein. 相似文献
18.
19.
Structural variations of two parvalbumins, Whiting III and Pike III, in various denaturing conditions, have been studied by circular dichroism. CD signals are depressed from 4 urea. For Pike III, acidic pH, sodium dodecyl sulfate or complete removal of Ca2+ show little effect in the far ultraviolet region but rather strong effects in the near ultraviolet. For Whiting III similar results are obtained at acidic pH. Carboxymethylated Whiting III (0.15 Ca2+/mol) shows, on the contrary, decreased CD signals in the far and in the near ultraviolet spectra. Addition of Ca2+ fully restores the native CD spectra in both proteins. Ca2+ binding produces structural modifications which are found to vary according to parvalbumin and which seem in any case different from those described for troponin C. 相似文献