共查询到20条相似文献,搜索用时 15 毫秒
1.
LRR-containing proteins are present in over 2000 proteins from viruses to eukaryotes. Most LRRs are 20-30 amino acids long, and the repeat number ranges from 2 to 42. The known structures of 14 LRR proteins, each containing 4-17 repeats, have revealed that the LRR domains fold into a horseshoe (or arc) shape with a parallel beta-sheet on the concave face and with various secondary structures, including alpha-helix, 3(10)-helix, and pII helix on the convex face. We developed simple methods to charactere quantitatively the arc shape of LRR and then applied them to all known LRR proteins. A quantity of 2Rsin(phi/2), in which R and phi are the radii of the LRR arc and the rotation angle about the central axis per repeating unit, respectively, is highly conserved in all the LRR proteins regardless of a large variety of repeat number and the radius of the LRR arc. The radii of the LRR arc with beta-alpha structural units are smaller than those with beta-3(10) or beta-pII units. The concave face of the LRR beta-sheet forms a surface analogous to a part of a M?bius strip. 相似文献
2.
Two distinct domains within CIITA mediate self-association: involvement of the GTP-binding and leucine-rich repeat domains 下载免费PDF全文
Linhoff MW Harton JA Cressman DE Martin BK Ting JP 《Molecular and cellular biology》2001,21(9):3001-3011
CIITA is the master regulator of class II major histocompatibility complex gene expression. We present evidence that CIITA can self-associate via two domains: the C terminus (amino acids 700 to 1130) and the GTP-binding domain (amino acids 336 to 702). Heterotypic and homotypic interactions are observed between these two regions. Deletions within the GTP-binding domain that reduce GTP-binding and transactivation function also reduce self-association. In addition, two leucine residues in the C-terminal leucine-rich repeat region are critical for self-association as well as function. This study reveals for the first time a complex pattern of CIITA self-association. These interactions are discussed with regard to the apoptosis signaling proteins, Apaf-1 and Nod1, which share domain arrangements similar to those of CIITA. 相似文献
3.
Understanding the mechanisms of protein function is indispensable for many biological applications, such as protein engineering and drug design. However, experimental annotations are sparse, and therefore, theoretical strategies are needed to fill the gap. Here, we present the latest developments in building functional subclassifications of protein superfamilies and using evolutionary conservation to detect functional determinants, for example, catalytic-, binding- and specificity-determining residues important for delineating the functional families. We also briefly review other features exploited for functional site detection and new machine learning strategies for combining multiple features. 相似文献
4.
Legouis R Jaulin-Bastard F Schott S Navarro C Borg JP Labouesse M 《EMBO reports》2003,4(11):1096-1102
The asymmetric distribution of proteins to basolateral and apical membranes is an important feature of epithelial cell polarity. To investigate how basolateral LAP proteins (LRR (for leucine-rich repeats) and PDZ (for PSD-95/Discs-large/ZO-1), which play key roles in cell polarity, reach their target membrane, we carried out a structure–function study of three LAP proteins: Caenorhabditis elegans LET-413, human Erbin and human Scribble (hScrib). Deletion and point mutation analyses establish that their LRR domain is crucial for basolateral membrane targeting. This property is specific to the LRR domain of LAP proteins, as the non-LAP protein SUR-8 does not localize at the basolateral membrane of epithelial cells, despite having a closely related LRR domain. Importantly, functional studies of LET-413 in C. elegans show that although its PDZ domain is dispensable during embryogenesis, its LRR domain is essential. Our data establish a novel paradigm for protein localization by showing that a subset of LRR domains direct subcellular localization in polarized cells. 相似文献
5.
Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis 总被引:5,自引:0,他引:5
Pablo Tornero Esther Mayda María Dolores Gómez Luis Cañas Vicente Conejero Pablo Vera 《The Plant journal : for cell and molecular biology》1996,10(2):315-330
This paper describes the isolation and characterization of LRP , a new gene from tomato plants. The deduced amino acid sequence showed that the encoded protein is enriched in leucine, and contains interesting structural motifs. LRP contains four tandem repeats of a canonical 24 amino acid leucine-rich repeat (LRR) sequence present in different proteins that mediates molecular recognition and/or interaction processes. Genomic organization and intron-exon arrangement of LRP favor the hypothesis that the LRR domains present in LRP evolved by exon duplication and shuffling. LRP expression analysis and immunohisto-chemical localization studies of the encoded protein indicate that the gene is under developmental regulation exhibiting tissue-specificity, particularly in certain cell types of the stele, like phloem fibers, parenchyma cells of the protoxylem, and in the cell files that constitute the rays of the secondary xylem. It is shown that this gene is upregulated in diseased tomato plants infected with citrus exocortis viroid. However, in this pathogenic context, LRP is processed proteolytically to a lower molecular weight form by a host-induced extracellular protease. The structural characteristics of LRP, its spatio-temporal pattern of expression, and its post-translational processing during pathogenesis, suggest this protein as a candidate molecule that may mediate recognition and interaction events taking place in the plant extracellular matrix under normal and/or pathogenesis-related conditions. 相似文献
6.
7.
Clark LB Viswanathan P Quigley G Chiang YC McMahon JS Yao G Chen J Nelsbach A Denis CL 《The Journal of biological chemistry》2004,279(14):13616-13623
CCR4, a poly(A) deadenylase of the exonuclease III family, is a component of the multiprotein CCR4-NOT complex of Saccharomyces cerevisiae that is involved in mRNA degradation. CCR4, unlike all other exonuclease III family members, contains a leucine-rich repeat (LRR) motif through which it makes contact to CAF1 and other factors. The LRR residues important in contacting CAF1 were identified by constructing 29 CCR4 mutations encompassing a majority (47 of 81) of residues interstitial to the conserved structural residues. Two-hybrid and immunoprecipitation data revealed that physical contact between CAF1 and the LRR is blocked by mutation of just two alpha-helix/beta-helix strand loop residues linking the first and second repeats. In contrast, CAF16, a potential ligand of CCR4, was abrogated in its binding to the LRR by mutations in the N terminus of the second beta-strand. The LRR domain was also found to contact the deadenylase domain of CCR4, and deletion of the LRR region completely inhibited CCR4 enzymatic activity. Mutations throughout the beta-sheet surface of the LRR, including those that did not specifically interfere with contacts to CAF1 or CAF16, significantly reduced CCR4 deadenylase activity. These results indicate that the CCR4-LRR, in addition to binding to CAF1, plays an essential role in the CCR4 deadenylation of mRNA. 相似文献
8.
Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein 总被引:1,自引:0,他引:1
The Arabidopsis (Arabidopsis thaliana) RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5) disease resistance protein mediates recognition of the Pseudomonas syringae effector protein AvrPphB. RPS5 belongs to the coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) family and is activated by AvrPphB-mediated cleavage of the protein kinase PBS1. Here, we present a structure-function analysis of the CC and LRR domains of RPS5 using transient expression assays in Nicotiana benthamiana. We found that substituting the CC domain of RPS2 for the RPS5 CC domain did not alter RPS5 specificity and only moderately reduced its ability to activate programmed cell death, suggesting that the CC domain does not play a direct role in the recognition of PBS1 cleavage. Analysis of an RPS5-super Yellow Fluorescent Protein fusion revealed that RPS5 localizes to the plasma membrane (PM). Alanine substitutions of predicted myristoylation (glycine-2) and palmitoylation (cysteine-4) residues affected RPS5 PM localization, protein stability, and function in an additive manner, indicating that PM localization is essential to RPS5 function. The first 20 amino acids of RPS5 were sufficient for directing super Yellow Fluorescent Protein to the PM. C-terminal truncations of RPS5 revealed that the first four LRR repeats are sufficient for inhibiting RPS5 autoactivation; however, the complete LRR domain was required for the recognition of PBS1 cleavage. Substitution of the RPS2 LRR domain resulted in the autoactivation of RPS5, indicating that the LRR domain must coevolve with the NBS domain. We conclude that the RPS5 LRR domain functions to suppress RPS5 activation in the absence of PBS1 cleavage and promotes RPS5 activation in its presence. 相似文献
9.
The leucine-rich repeat as a protein recognition motif 总被引:52,自引:0,他引:52
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna1p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions. 相似文献
10.
Sela H Spiridon LN Petrescu AJ Akerman M Mandel-Gutfreund Y Nevo E Loutre C Keller B Schulman AH Fahima T 《Molecular Plant Pathology》2012,13(3):276-287
In this study, we explore the diversity and its distribution along the wheat leaf rust resistance protein LR10 three-dimensional structure. Lr10 is a leaf rust resistance gene encoding a coiled coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) class of protein. Lr10 was cloned and sequenced from 58 accessions representing diverse habitats of wild emmer wheat in Israel. Nucleotide diversity was very high relative to other wild emmer wheat genes (π= 0.029). The CC domain was found to be the most diverse domain and subject to positive selection. Superimposition of the diversity on the CC three-dimensional structure showed that some of the variable and positively selected residues were solvent exposed and may interact with other proteins. The LRR domain was relatively conserved, but showed a hotspot of amino acid variation between two haplotypes in the ninth repeat. This repeat was longer than the other LRRs, and three-dimensional modelling suggested that an extensive α helix structure was formed in this region. The two haplotypes also differed in splicing regulation motifs. In genotypes with one haplotype, an intron was alternatively spliced in this region, whereas, in genotypes with the other haplotype, this intron did not splice at all. The two haplotypes are proposed to be ancient and maintained by balancing selection. 相似文献
11.
A gene encoding an antifreeze protein (AFP) was isolated from carrot (Daucus carota) using sequence information derived from the purified protein. The carrot AFP is highly similar to the polygalacturonase inhibitor protein (PGIP) family of apoplastic plant leucine-rich repeat (LRR) proteins. Expression of the AFP gene is rapidly induced by low temperatures. Furthermore, expression of the AFP gene in transgenic Arabidopsis thaliana plants leads to an accumulation of antifreeze activity. Our findings suggest that a new type of plant antifreeze protein has recently evolved from PGIPs. 相似文献
12.
Neuronal leucine-rich repeat protein 4 functions in hippocampus-dependent long-lasting memory 下载免费PDF全文
Bando T Sekine K Kobayashi S Watabe AM Rump A Tanaka M Suda Y Kato S Morikawa Y Manabe T Miyajima A 《Molecular and cellular biology》2005,25(10):4166-4175
Neuronal leucine-rich repeat proteins (NLRRs) are type I transmembrane proteins and expressed in neuronal tissues, but their function remains unknown. Here, we describe the identification and characterization of a new member of the NLRR family, NLRR4, and its potential role in long-lasting memory. We generated NLRR4-deficient (NLRR4(-/-)) mice and found that they showed impaired memory retention. In hippocampus-dependent learning tasks, NLRR4(-/-) mice were able to learn and maintain the memories for one day but unable to retain the memories for four days after learning. In contrast, in a hippocampus-independent task, NLRR4(-/-) mice were able to retain the memory normally for at least seven days. These results suggest that NLRR4 plays a key role in hippocampus-dependent long-lasting memory. 相似文献
13.
LARK is an essential Drosophila RNA-binding protein of the RNA recognition motif (RRM) class that functions during embryonic development and for the circadian regulation of adult eclosion. LARK protein contains three consensus RNA-binding domains: two RRM domains and a retroviral-type zinc finger (RTZF). To show that these three structural domains are required for function, we performed a site-directed mutagenesis of the protein. The analysis of various mutations, in vivo, indicates that the RRM domains and the RTZF are required for wild-type LARK functions. RRM1 and RRM2 are essential for viability, although interestingly either domain can suffice for this function. Remarkably, mutation of either RRM2 or the RTZF results in the same spectrum of phenotypes: mutants exhibit reduced viability, abnormal wing and mechanosensory bristle morphology, female sterility, and flightlessness. The severity of these phenotypes is similar in single mutants and double RRM2; RTZF mutants, indicating a lack of additivity for the mutations and suggesting that RRM2 and the RTZF act together, in vivo, to determine LARK function. Finally, we show that mutations in RRM1, RRM2, or the RTZF do not affect the circadian regulation of eclosion, and we discuss possible interpretations of these results. This genetic analysis demonstrates that each of the LARK structural domains functions in vivo and indicates a pleiotropic requirement for both the LARK RRM2 and RTZF domains. 相似文献
14.
Apweiler R Attwood TK Bairoch A Bateman A Birney E Biswas M Bucher P Cerutti L Corpet F Croning MD Durbin R Falquet L Fleischmann W Gouzy J Hermjakob H Hulo N Jonassen I Kahn D Kanapin A Karavidopoulou Y Lopez R Marx B Mulder NJ Oinn TM Pagni M Servant F Sigrist CJ Zdobnov EM;InterPro Consortium 《Bioinformatics (Oxford, England)》2000,16(12):1145-1150
15.
Sharfman M Bar M Ehrlich M Schuster S Melech-Bonfil S Ezer R Sessa G Avni A 《The Plant journal : for cell and molecular biology》2011,68(3):413-423
Extracellular leucine-rich repeat (LRR) receptor-like proteins (RLPs) represent a unique class of cell-surface receptors, as they lack a functional cytoplasmic domain. Our knowledge of how RLPs that do not contain a kinase or Toll domain function is very limited. The tomato RLP receptor LeEix2 signals to induce defense responses mediated by the fungal protein ethylene-inducing xylanase (EIX). The movement of FYVE-positive endosomes before and after EIX application was examined using spinning disc confocal microscopy. We found that while FYVE-positive endosomes generally observe a random movement pattern, following EIX application a subpopulation of FYVE-positive endosomes follow a directional movement pattern. Further, cellular endosomes travel greater distances at higher speeds following EIX application. Time-course experiments conducted with specific inhibitors demonstrate the involvement of endosomal signaling in EIX-triggered defense responses. Abolishing the existence of endosomes or the endocytic event prevented EIX-induced signaling. Endocytosis/endosome inhibitors, such as Dynasore or 1-butanol, inhibit EIX-induced signaling. Moreover, treatment with Endosidin1, which inhibits an early step in plasma membrane/endosome trafficking, enhances the induction of defense responses by EIX. Our data indicate a distinct endosomal signaling mechanism for induction of defense responses in this RLP system. 相似文献
16.
17.
GeMMA (Genome Modelling and Model Annotation) is a new approach to automatic functional subfamily classification within families and superfamilies of protein sequences. A major advantage of GeMMA is its ability to subclassify very large and diverse superfamilies with tens of thousands of members, without the need for an initial multiple sequence alignment. Its performance is shown to be comparable to the established high-performance method SCI-PHY. GeMMA follows an agglomerative clustering protocol that uses existing software for sensitive and accurate multiple sequence alignment and profile–profile comparison. The produced subfamilies are shown to be equivalent in quality whether whole protein sequences are used or just the sequences of component predicted structural domains. A faster, heuristic version of GeMMA that also uses distributed computing is shown to maintain the performance levels of the original implementation. The use of GeMMA to increase the functional annotation coverage of functionally diverse Pfam families is demonstrated. It is further shown how GeMMA clusters can help to predict the impact of experimentally determining a protein domain structure on comparative protein modelling coverage, in the context of structural genomics. 相似文献
18.
We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach. 相似文献
19.
Aiko Itoh Yasuhiro Nonaka Takashi Ogawa Takanori Nakamura 《Bioscience, biotechnology, and biochemistry》2017,81(11):2098-2104
We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins. 相似文献
20.
We have analyzed the functional domain structure of vinculin, a protein involved in linking microfilaments to the cytoplasmic face of cell membranes in animal cells. For this purpose, we used several monoclonal antibodies raised against chicken gizzard vinculin whose epitopes could be assigned to discrete regions in the vinculin sequence by immunoblotting of proteolytic fragments combined with N-terminal amino acid sequencing. Two of these antibodies induced the disruption of stress fibers and changed the number of morphology of focal contacts after microinjection in chicken embryo fibroblasts. Based on the location of its epitope in comparison with vinculin domains previously identified by other groups, we propose that one of these antibodies (15B7) interferes with the binding of vinculin to talin, the most peripheral of the microfilament proteins. The second antibody (14C10) binds within a region comprising three internal repeats and might therefore distort the inner architecture of vinculin. A third antibody (As3) inhibited the binding of F-actin to vinculin in an in vitro assay but had no effect on the microfilament system in cells. These data emphasize the role of vinculin as a key protein in microfilament-membrane linkage and support previous work on a direct interaction between vinculin and actin. 相似文献