首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Evolution ofDrosophila repetitive-dispersed DNA   总被引:8,自引:0,他引:8  
We have examined the phylogenetic distribution of a spectrum of Drosophila repetitive-dispersed DNAs ranging from structurally complex transposable elements to scrambled middle repetitive sequences. Our data suggest that unlike typical "genes" these DNAs are unstable components of the drosophilid genome. The unusual behavior of these repetitive-dispersed DNAs raises the possibility that this type of sequence may have an important role in the evolution of the family Drosophilidae.  相似文献   

3.
Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.  相似文献   

4.
Compositional changes are a major feature of genome evolution. Overlooking nucleotide composition differences among sequences can seriously mislead phylogenetic reconstructions. Large compositional variation exists among the members of the family Drosophilidae. Until now, however, base composition differences have been largely neglected in the formulations of the nucleotide substitution process used to reconstruct the phylogeny of this important group of species. The present study adopts a maximum-likelihood framework of phylogenetic inference in order to analyze five nuclear gene regions and shows that (1) the pattern of compositional variation in the Drosophilidae does not match the phylogeny of the species; (2) accounting for the heterogeneous GC content with Galtier and Gouy's nucleotide substitution model leads to a tree that differs in significant aspects from the tree inferred when the nucleotide composition differences are ignored, even though both phylogenetic hypotheses attain strong nodal support in the bootstrap analyses; and (3) the LogDet distance correction cannot completely overcome the distorting effects of the compositional variation that exists among the species of the Drosophilidae. Our analyses confidently place the Chymomyza genus as an outgroup closer than the genus Scaptodrosophila to the Drosophila genus and conclusively support the monophyly of the Sophophora subgenus.  相似文献   

5.
Uhrig RG  Moorhead GB 《Plant physiology》2011,157(4):1778-1792
Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.  相似文献   

6.
7.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   

8.
Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.  相似文献   

9.
The Drosophila olfactory genes OS-E and OS-F are members of a family of genes that encode insect odorant-binding proteins (OBPs). OBPs are believed to transport hydrophobic odorants through the aqueous fluid within olfactory sensilla to the underlying receptor proteins. The recent discovery of a large family of olfactory receptor genes in Drosophila raises new questions about the function, diversity, regulation, and evolution of the OBP family. We have investigated the OS-E and OS-F genes in a variety of Drosophila species. These studies highlight potential regions of functional significance in the OS-E and OS-F proteins, which may include a region required for interaction with receptor proteins. Our results suggest that the two genes arose by an ancient gene duplication, and that in some lineages, one or the other gene has been lost. In D. virilis, the OS-F gene shows a different spatial pattern of expression than in D. melanogaster. One of the OS-F introns shows a striking degree of conservation between the two species, and we identify a putative regulatory sequence within this intron. Finally, a phylogenetic analysis places both OS-E and OS-F within a large family of insect OBPs and OBP-like proteins.  相似文献   

10.
A cluster of four trypsin genes has previously been localized to cytological position 47D-F of the Drosophila melanogaster genome. One of these genes had been sequenced, and the presence of the other three genes was identified by cross-hybridization. Here, we present the DNA sequence of the entire genomic region encoding these four trypsin genes. In addition to the four previously inferred genes, we have identified a fifth trypsin-coding sequence located within this gene cluster. This new gene shows a high degree of sequence divergence (more than 30%) from the other four genes, although it retains all of the functional motifs that are characteristic of trypsin-coding sequences. In order to trace the molecular evolution of this gene cluster, we isolated and sequenced the homologous 7-kb region from the closely related species Drosophila erecta. A comparison of the DNA sequences between the two species provides strong evidence for the concerted evolution of some members of this gene family. Two genes within the cluster are evolving in concert, while a third gene appears to be evolving independently. The remaining two genes show an intermediate pattern of evolution. We propose a simple model, involving chromosome looping and gene conversion, to explain the relatively complex patterns of molecular evolution within this gene cluster.  相似文献   

11.
Mutations in single Drosophila melanogaster genes can alter total body metal accumulation. We therefore asked whether evolutionary constraints maintain biologically abundant metal ions (iron, copper, manganese and zinc) to similar concentrations in different species of Drosophilidae, or whether metal homeostasis is a highly adaptable trait as shown previously for triglyceride and glycogen storage. To avoid dietary influences, only species able to grow and reproduce on a standard laboratory medium were selected for analysis. Flame atomic absorption spectrometry was used to determine metal content in 5-days-old adult flies. Overall, the data suggest that the metallome of the nine species tested is well conserved. Meaningful average values for the Drosophilidae family are presented. Few statistically significant differences were noted for copper, manganese and zinc between species. In contrast, Drosophila erecta and Drosophila virilis showed a 50% increase above average and a 30% decrease below average in iron concentrations, respectively. The changes in total body iron content correlated with altered iron storage in intestinal ferritin stores of these species. Hence, the variability in iron content could be accounted for by a corresponding adaptation in iron storage regulation. We suggest that the relative expression of the multitude of metalloenzymes and other metal-binding proteins remains overall similar between species and likely determines relative metal abundances in the organism. The availability of a complete and annotated genome sequence of different Drosophila species presents opportunities to study the evolution of metal homeostasis in closely related organisms that have evolved separately for millions or dozens of million years.  相似文献   

12.
Protein kinases and protein phosphatases constitute about 2-4% of the genes in a typical eukaryotic genome. Protein phosphatases are important players in many cellular processes such as proliferation, differentiation, cell adhesion, and motility. In this study, we identified, classified, and analyzed protein phosphatase complement of the dog genome. In this article, we report the identification of at least 178 putative protein phosphatases in dog which include 51 PSTPs, 112 PTPs, and 15 Asp-based protein phosphatases. Interestingly, we found at least five novel protein phosphatases in dog, namely DUSP5L, DUSP18L, MTMR9L, MTMR12L, and PPP6CL which are not present in human, mouse, rat, and cow. In addition, we found PTP4A1-rt, a retro-transposed copy of the PTP4A1 gene, in chromosome 27. Furthermore, we modeled three-dimensional structures of the catalytic domains of these putative protein phosphatases and aligned them to see the structural similarities between them. We docked PPP2CA with okadaic acid and calculated the value of affinity energy as -8.8?kcal/mol. Our nucleotide substitution rate study revealed that apparently none of the phosphatase family is under significantly higher evolutionary pressure.  相似文献   

13.
Summary In the 50 million years since the polyploidization event that gave rise to the catostomid family of fishes the duplicate genes encoding isozymes have undergone different fates. Ample opportunity has been available for regulatory evolution of these duplicate genes. Approximately half the duplicate genes have lost their expressions during this time. Of the duplicate genes remaining, the majority have diverged to different extents in their expression within and among adult tissues. The pattern of divergence of duplicate gene expression is consistent with the accumulation of mutations at regulatory genes. The absence of a correlation of extent of divergence of gene expression with the level of genetic variability for isozymes at these loci is consistent with the view that the rates of regulatory gene and structural gene evolution are uncoupled. The magnitude of divergence of duplicate gene expressions varies among tissues, enzymes, and species. Little correlation was found with the extent of divergence of duplicate gene expression within a species and its degree of morphological conservatism, although species pairs which are increasingly taxonomically distant are less likely to share specific patterns of differential gene expression. Probable phylogenetic times of origin of several patterns of differential gene expression have been proposed. Some patterns of differential gene expression have evolved in recent evolutionary times and are specific to one or a few species, whereas at least one pattern of differential gene expression is present in nearly all species and probably arose soon after the polyploidization event. Multilocus isozymes, formed by polyploidization, provide a useful model system for studying the forces responsible for the maintenance of duplicate genes and the evolution of these once identical genes to new spatially and temporally specific patterns of regulation.  相似文献   

14.
We recently reported the unprecedented occurrence of a hemoglobin gene (glob1) in the fruitfly Drosophila melanogaster. Here we investigate the structure and evolution of the glob1 gene in other Drosophila species. We cloned and sequenced glob1 genes and cDNA from D. pseudoobscura and D. virilis, and identified the glob1 gene sequences of D. simulans, D. yakuba, D. erecta, D. ananassae, D. mojavensis and D. grimshawi in the databases. Gene structure (introns in helix positions D7.0 and G7.0), gene synteny and sequence of glob1 are highly conserved, with high ds/dn ratios indicating strong purifying selection. The data suggest an important role of the glob1 protein in Drosophila, which may be the control of oxygen flow from the tracheal system. Furthermore, we identified two additional globin genes (glob2 and glob3) in the Drosophilidae. Although the sequences are highly derived, the amino acids required for heme- and oxygen-binding are conserved. In contrast to other known insect globin, the glob2 and glob3 genes harbour both globin-typical introns at positions B12.2 and G7.0. Both genes are conserved in various drosophilid species, but only expression of glob2 could be demonstrated by western blotting and RT-PCR. Phylogenetic analyses show that the clade leading to glob2 and glob3, which are sistergroups, diverged first in the evolution of dipteran globins. glob1 is closely related to the intracellular hemoglobin of the botfly Gasterophilus intestinalis, and the extracellular hemoglobins from the chironomid midges derive from this clade.  相似文献   

15.
Drosophilidae (Diptera) is a diverse, cosmopolitan family of flies. Here, we present a combined analysis phylogeny of Drosophilinae, one of the two subfamilies of Drosophilidae, based on data from six different data partitions, including both molecular and morphological characters. Although our data show support for the monophyly of the Hawaiian Drosophilidae, and the subgenus Sophophora, neither the genus Drosophila nor the subgenus Drosophila is monophyletic. Partitioned Bremer support (PBS) indicates that morphological data taken from Grimaldi's monograph (Grimaldi, 1990a), as well as sequences from the mitochondrial (mt) 16S rDNA and the nuclear Adh gene, lend much support to our tree's topology. This is particularly interesting in the case of Grimaldi's data, since his published hypothesis conflicts with ours in significant ways. Our combined analysis cladogram phylogeny reflects the catch-all designation that the name Drosophila has become, in that the cladogram does not support the monophyly of either the genus or subgenus Drosophila.  相似文献   

16.
It is now established that a family of dual-specificity protein phosphatases are able to interact with mitogen and stress-activated protein kinases in a highly specific manner to differentially regulate these enzymes in mammalian cells. A role for these proteins in negative feedback regulation of MAP kinase activity is also supported by genetic and biochemical studies in yeasts and Drosophila. More recently it has become clear that other classes of protein phosphatase also play key roles in the regulated dephosphorylation of MAP kinases, including tyrosine-specific protein phosphatases and serine/threonine protein phosphatases. It is likely that a complex balance between upstream activators and these different classes of MAP kinase specific phosphatase are responsible for determining, at least in part, the magnitude and duration of MAP kinase activation and hence the physiological outcome of signalling.  相似文献   

17.
Analysis of the AMP-forming ACS gene was performed in 12 species of the Drosophilidae family. Systematically four introns, aligned at the same positions, were detected, but none of them showed a position similar to those known for species outside the Drosophilidae family. The average length of introns varied from 63 to 75 bp but in two species Drosophila takahashii and D. kikkawai the length of the second intron was 343 and 210 bp, respectively. In coding regions, about 80% of the third codon positions were substituted while first and second positions showed, respectively, 14% and 6% substitutions. Interestingly, the divergence observed at the protein level between species was very low. The phylogenetic tree based on the DNA sequences of the exons was mainly in agreement with taxonomic classification and previous molecular phylogenies except for D. ananassae, which appeared more closely related to D. subobscura and D. funebris than to the species of the melanogaster group.  相似文献   

18.
A total of 752 odorant receptor (Or) genes, including pseudogenes, were identified in 11 Drosophila species and named after their orthologs in Drosophila melanogaster. The 813 Or genes, including 61 from D. melanogaster, were classified into 59 orthologous groups that are well supported by gene phylogeny. By reconciling with the gene family phylogeny, we estimated the number of gene duplication/loss events and intron gain/loss events in the species phylogeny. We found that these events are particularly frequent in Drosophila grimshawi, Drosophila willistoni, and obscura group. More than half of the duplicated genes stay as tandem arrays, whose size range from 2 to 8. These genes vary in sequence and some likely underwent positive selection, indicating that the gene duplication was important for flies to acquire new olfactory functions. We hypothesize that Or genes conferred the basic olfactory repertoire to ancestral flies before the speciation of the Drosophila and Sophophora subgenera about 40 Mya. This repertoire has been largely maintained in the current species, whereas lineage-specific gene duplication seems to have led to additional specialization in some species in response to specific ecological conditions.  相似文献   

19.
Plant resistance to many types of pathogens and pests can be achieved by the presence of disease resistance (R) genes. The nucleotide binding site-leucine rich repeat (NBS-LRR) class of R-genes is the most commonly isolated class of R-genes and makes up a super-family, which is often arranged in the genome as large multi-gene clusters. The NBS domain of these genes can be targeted by polymerase chain reaction (PCR) amplification using degenerate primers. Previous studies have used PCR derived NBS sequences to investigate both ancient R-gene evolution and recent evolution within specific plant families. However, comparative studies with the Asteraceae family have largely been ignored. In this study, we address recent evolution of NBS sequences within the Asteraceae and extend the comparison to the Arabidopsis thaliana genome. Using multiple sets of primers, NBS fragments were amplified from genomic DNA of three species from the family Asteraceae: Helianthus annuus (sunflower), Lactuca sativa (lettuce), and Cichorium intybus (chicory). Analysis suggests that Asteraceae species share distinct families of R-genes, composed of genes related to both coiled-coil (CC) and toll-interleukin-receptor homology (TIR) domain containing NBS-LRR R-genes. Between the most closely related species, (lettuce and chicory) a striking similarity of CC subfamily composition was identified, while sunflower showed less similarity in structure. These sequences were also compared to the A. thaliana genome. Asteraceae NBS gene subfamilies appear to be distinct from Arabidopsis gene clades. These data suggest that NBS families in the Asteraceae family are ancient, but also that gene duplication and gene loss events occur and change the composition of these gene subfamilies over time.  相似文献   

20.
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ~9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号