首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study examined the effect of schisandrin, one of the major lignans isolated from Schisandra chinensis, on spontaneous contraction in rat colon and its possible mechanisms. Schisandrin produced a concentration-dependent inhibition (EC50 = 1.66 μM) on the colonic spontaneous contraction. The relaxant effect of schisandrin could be abolished by the neuronal Na+ channel blocker tetrodotoxin (1 μM) but not affected by propranolol (1 μM), phentolamine (1 μM), atropine (1 μM) or nicotine desensitization, suggesting possible involvement of non-adrenergic non-cholinergic (NANC) transmitters released from enteric nerves. Nω-nitro-l-arginine methyl ester (100-300 μM), a nitric oxide synthase inhibitor, attenuated the schisandrin response. The role of nitric oxide (NO) was confirmed by an increase in colonic NO production after schisandrin incubation, and the inhibition on the schisandrin responses by soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-α]-quinoxalin-1-one (1-30 μM). Non-nitrergic NANC components may also be involved in the action of schisandrin, as suggested by the significant inhibition of apamin on the schisandrin-induced responses. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (100 μM), a selective P2 purinoceptor antagonist, markedly attenuated the responses to schisandrin. In contrast, neither 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptors, nor chymotrypsin, a serine endopeptidase, affected the responses. All available results have demonstrated that schisandrin produced NANC relaxation on the rat colon, with the involvement of NO and acting via cGMP-dependent pathways. ATP, but not adenosine and VIP, likely plays a role in the non-nitrergic, apamin-sensitive component of the response.  相似文献   

2.
Twenty Schisandra samples were collected from different locations. Contents of 7 lignans in the samples were determined and analyzed by HPLC method coupled with hierarchical clustering analysis (HCA) and principal component analysis (PCA), and the antioxidant capacity of Schisandra from the different locations was evaluated by reducing power, ferric thiocyanate (FTC) and 2,2′‐diphenyl‐1‐picrylhydrazyl (DPPH) assay. The results showed that there was a significant difference in the content of lignans between Schisandra chinensis and Schisandra sphenanthera. The Schisandra sphenanthera samples in the southwest of China were significantly different from those from the other locations. The antioxidant capacity of Schisandra chinensis was significantly superior to that of Schisandra sphenanthera, and the main antioxidant components were schisandrol A, schisandrol B and schisandrin B based on the result of discrimination analyses. The differences in the chemical composition and antioxidant activity of lignans in Schisandra chinensis and Schisandra sphenanthera from the different locations were investigated in this study, which may provide an experimental basis for the quality control of Schisandra.  相似文献   

3.
《Phytomedicine》2014,21(5):766-772
We recently reported that Wuzhi tablet (WZ), a preparation of the ethanol extract of Wuweizi (Schisandra sphenanthera), had significant effects on blood concentrations of Tacrolimus (FK506) in renal transplant recipients and rats. The active lignans in WZ are schisandrin A, schisandrin B, schisandrin C, schisandrol A, schisandrol B, schisantherin A, and schisantherin B. Until now, whether the pharmacokinetics of these lignans in WZ would be affected by FK506 remained unknown. Therefore, this study aimed to investigate whether and how FK506 affected pharmacokinetics of lignans in WZ in rats and the potential roles of CYP3A and P-gp. After a single oral co-administration of FK506 and WZ, the blood concentration of lignans in WZ was decreased by FK506; furthermore, the AUC of schisantherin A, schisandrin A, schisandrol A and schisandrol B was only 64.5%, 47.2%, 55.1% and 57.4% of that of WZ alone group, respectively. Transport study in Caco-2 cells showed that these lignans were not substrates of P-gp, suggesting decreased blood concentration of lignans by FK506 was not via P-gp pathway. Metabolism study in the human recombinant CYP 3A showed that these lignans had higher affinity to CYP3A than that of FK506, and thus had a stronger CYP3A-mediated metabolism. It was concluded that the blood concentrations of these lignans were decreased and their CYP3A-mediated metabolisms were increased in the presence of FK506 since these lignans had higher affinity to CYP3A.  相似文献   

4.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

5.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A2 (PLA2) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca2+-activated chloride current (ICl(Ca)) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited ICl(Ca) in a concentration-dependent manner (IC50 = 4.2 μM, nHill = 1.1), without affecting the L-type Ca2+ current. Unlike ACA, the non-selective PLA2 inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on ICl(Ca). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on ICl(Ca), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS;100 μM). Besides ICl(Ca), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on ICl(Ca) are PLA2-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.  相似文献   

6.
7.

Aims

The aim of this study is to investigate the vasorelaxant effect of 16-O-acetyldihydroisosteviol (ADIS) and its underlying mechanisms in isolated rat aorta.

Main methods

Rat aortic rings were isolated, suspended in organ baths containing Kreb's solution, maintained at 37 °C, and mounted on tungsten wire and continuously bubbled with a mixture of 95% O2 and 5% CO2 under a resting tension of 1 g. The vasorelaxant effects of ADIS were investigated by means of isometric tension recording experiment.

Key findings

ADIS (0.1 μM–3 mM) induced relaxation of aortic rings pre-contracted by phenylephrine (PE, 10 μM) and KCl (80 mM) with intact-endothelium (Emax = 79.26 ± 3.74 and 79.88 ± 3.79, respectively) or denuded-endothelium (Emax = 88.05 ± 3.69 and 78.22 ± 6.86, respectively). In depolarization Ca2+-free solution, ADIS inhibits calcium chloride (CaCl2)-induced contraction in endothelium-denuded rings in a concentration-dependent manner. In addition, ADIS attenuates transient contractions in Ca2+-free medium containing EGTA (1 mM) induced by PE (10 μM) and caffeine (20 mM). By contrast, relaxation was not affected by tetraethylammonium (TEA, 5 mM), 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 μM), barium chloride (BaCl2, 1 mM), and 1H-[1,2,3]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 1 μM).

Significance

These findings reveal the vasorelaxant effect of ADIS, through endothelium-independent pathway. It acts as a Ca2 + channel blocker through both intracellular and extracellular Ca2 + release.  相似文献   

8.
Abstract

Considerable interest has been shown in natural sources and their compounds in developing new therapeutically agents for different diseases. In this framework, investigations performed on this topic play a central role for human health and drug development process. Schisandra chinensis (Turcz.) Baill is a medicinal and edible plant showing highly advantageous bioactivity and nutritional value. The main bioactive compounds from its fruits are lignans, derivatives of dibenzocyclooctadiene whereas concerning its leaves, phenolic acids, and flavonoids are dominant. The purpose of this study was to investigate the enzyme inhibitory potential on selected carbohydrate hydrolases, cholinesterases, and tyrosinase of extracts from fruits and leaves of Schisandra in relation with their main bioactive compounds. Furthermore, the interactions between dominant compounds (schisandrol A, schisandrol B, schisandrin B, and cinnamic acid) from extracts and selected enzymes were investigated by molecular modeling and molecular dynamic studies in order to explain at a molecular level our findings.  相似文献   

9.
10.
11.
Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca2+ and H+ on binding of the other ion in the E1 and P-E2 states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg2+ a strictly competitive binding sequence, H2E1?HE1?E1?CaE1?Ca2E1, was found with two Ca2+ ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K1/2(2 Ca) = 34 nM, K1/2(H) = 1 nM and K1/2(H2) = 1.32 μM. Up to 2 Mg2+ ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K1/2(Mg) = 165 μM, K1/2(Mg2) = 7.4 mM). In the P-E2 state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca2+ and H+ binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E2CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca2+ (0.4 mM and 25 mM) and H+ (2 μM and 10 μM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E1 and P-E2 conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.  相似文献   

12.
Enzyme immunosorbent assays were used to measure cyclic nucleotide concentrations in homogenates of salivary glands from partially fed female Dermacentor variabilis. The adenylyl cyclase activator forskolin (100 μM) increased homogenate cGMP concentrations greater than three-fold over controls. Competitive inhibition of nitric oxide synthase with 1 mM l-NMMA, an l-arginine analog, demonstrated that crosstalk occurs downstream of nitric oxide synthesis. Forskolin-stimulated synthesis of cGMP was diminished 58% by the soluble guanylyl cyclase inhibitor ODQ (2 μM). The protein kinase A selective inhibitor Rp-cAMPS (50 μM) inhibited forskolin-stimulated cGMP by 49%. Whole glands treated with 10 μM dopamine increased cGMP levels two-fold in the presence of 1 mM IBMX. Treatment of whole salivary glands with equimolar concentrations of 8-Br-cAMP and 8-Br-cGMP produced no greater fluid uptake than in glands treated with 8-Br-cGMP alone, suggesting that cAMP and cGMP share a downstream target. The protein kinase G-selective inhibitor Rp-8-pCPT-cGMPS (100 μM) impeded 10 mM 8-Bromo-cGMP-stimulated gland weight increases. Pretreatment with verapamil, a Ca2+ channel blocker, attenuated cyclic nucleotide-stimulated fluid uptake indicating that whole gland fluid changes are dependent on extracellular Ca2+. Together, our data suggest that cGMP production is mediated in part by cAMP-dependent activation of soluble guanylyl cyclase. Experiments measuring changes in whole salivary gland weight support the hypothesis that cAMP and cGMP signaling cascades have a common target and that cyclic nucleotide-stimulated fluid movement is dependent on Ca2+ influx.  相似文献   

13.
This study was undertaken to elucidate the effect of the essential oil from Alpinia speciosa (EOAs) on cardiac contractility and the underlying mechanisms. The essential oil was obtained from Alpinia speciosa leaves and flowers and the oil was analyzed by GC-MS method. Chemical analysis revealed the presence of at least 18 components. Terpinen-4-ol and 1,8-cineole corresponded to 38% and 18% of the crude oil, respectively. The experiments were conducted on spontaneously-beating right atria and on electrically stimulated left atria isolated from adult rats. The effect of EOAs on the isometric contractions and cardiac frequency in vitro was examined. EOAs decreased rat left atrial force of contraction with an EC50 of 292.2 ± 75.7 μg/ml. Nifedipine, a well known L-type Ca2+ blocker, inhibited in a concentration-dependent manner left atrial force of contraction with an EC50 of 12.1 ± 3.5 μg/ml. Sinus rhythm was diminished by EOAs with an EC50 of 595.4 ± 56.2 μg/ml. Whole-cell L-type Ca2+ currents were recorded by using the patch-clamp technique. EOAs at 25 μg/ml decreased ICa,L by 32.6 ± 9.2% and at 250 μg/ml it decreased by 89.3 ± 7.4%. Thus, inhibition of L-type Ca2+ channels is involved in the cardiodepressive effect elicited by the essential oil of Alpinia speciosa in rat heart.  相似文献   

14.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells.  相似文献   

15.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

16.
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd ∼ 5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.  相似文献   

17.
Non-specific L-type calcium channel blockers, such as verapamil (≥50 μM), induce metaphase-II (M-II) arrest and apoptosis in aged rat eggs cultured in Ca2+-deficient medium. However, the effects of extracellular Ca2+ on verapamil-induced M-II arrest and apoptosis have not yet been reported. We have demonstrated that postovulatory aging induced exit from M-II arrest by extruding a second polar body, a morphological sign of spontaneous egg activation (SEA). Verapamil inhibited SEA and induced egg apoptosis in a dose-dependent manner in Ca2+-deficient medium. The initiation of apoptotic features was observed at 50 μM of verapamil. Extracellular Ca2+ (1.80 mM) reduced intracellular H2O2 level, bax protein expression, caspase-3 activity, DNA fragmentation and protected against 50 μM, but not higher concentrations of ≥100 μM in verapamil-induced egg apoptosis. These results suggest that extracellular Ca2+ ions have a role during SEA and protect against verapamil-induced apoptosis in aged rat eggs.  相似文献   

18.
An endophytic fungus (Botryosphaeria rhodina) was isolated from the stems of the medicinal plant Bidens pilosa (Asteraceae) that is known for its anti-inflammatory, antiseptic and antifungal effects. The ethyl acetate extract of the fungal isolate exhibits significant antifungal activity as well as potent cytotoxic and antiproliferative effects against several cancer cell lines. Activity-guided fractionation resulted in the isolation of a complex of four depsidones, botryorhodines A-D and the auxin indole carboxylic acid. Botryorhodine A and B show moderate to weak cytotoxic activities against HeLa cell lines with a CC50 of 96.97 μM and 36.41 μM, respectively. In addition, they also show antifungal activity against a range of pathogenic fungi such as Aspergillus terreus (MIC 26.03 μM for botryorhodine A and 49.70 μM for B) and the plant pathogen Fusarium oxysporum (MIC 191.60 μM for botryorhodine A and 238.80 μM for B). A potential role of the endophyte in modulating fungal populations living within or attacking the host plant is discussed.  相似文献   

19.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

20.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号