首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating approximately 380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72x10(-7). The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62x10(-3) and 2.44x10(-3), respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10(-5) in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only approximately 0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66x10(-3) (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF.  相似文献   

2.
Lei SF  Shen H  Yang TL  Guo Y  Dong SS  Xu XH  Deng FY  Tian Q  Liu YJ  Liu YZ  Li J  Deng HW 《Human genetics》2012,131(3):463-469
Bone size (BS) is one of the major risk factors for osteoporotic fractures. BS variation is genetically determined to a substantial degree with heritability over 50%, but specific genes underlying variation of BS are still largely unknown. To identify specific genes for BS in Chinese, initial genome-wide association scan (GWAS) study and follow-up replication study were performed. In initial GWAS study, a group of 12 contiguous single-nucleotide polymorphism (SNP)s, which span a region of ~25 kb and locate at the upstream of HMGN3 gene (high-mobility group nucleosomal binding domain 3), achieved moderate association signals for spine BS, with P values ranging from 6.2E-05 to 1.8E-06. In the follow-up replication study, eight of the 12 SNPs were detected suggestive replicate associations with BS in 1,728 unrelated female Caucasians, which have well-known differences from Chinese in ethnic genetic background. The SNPs in the region of HMGN3 gene formed a tightly combined haplotype block in both Chinese and Caucasians. The results suggest that the genomic region containing HMGN3 gene may be associated with spine BS in Chinese.  相似文献   

3.
YP Zhang  FY Deng  TL Yang  F Zhang  XD Chen  H Shen  XZ Zhu  Q Tian  HW Deng 《PloS one》2012,7(9):e44292

Introduction

Human height is a highly heritable trait considered as an important factor for health. There has been limited success in identifying the genetic factors underlying height variation. We aim to identify sequence variants associated with adult height by a genome-wide association study of copy number variants (CNVs) in Chinese.

Methods

Genome-wide CNV association analyses were conducted in 1,625 unrelated Chinese adults and sex specific subgroup for height variation, respectively. Height was measured with a stadiometer. Affymetrix SNP6.0 genotyping platform was used to identify copy number polymorphisms (CNPs). We constructed a genomic map containing 1,009 CNPs in Chinese individuals and performed a genome-wide association study of CNPs with height.

Results

We detected 10 significant association signals for height (p<0.05) in the whole population, 9 and 11 association signals for Chinese female and male population, respectively. A copy number polymorphism (CNP12587, chr18:54081842-54086942, p = 2.41×10−4) was found to be significantly associated with height variation in Chinese females even after strict Bonferroni correction (p = 0.048). Confirmatory real time PCR experiments lent further support for CNV validation. Compared to female subjects with two copies of the CNP, carriers of three copies had an average of 8.1% decrease in height. An important candidate gene, ubiquitin-protein ligase NEDD4-like (NEDD4L), was detected at this region, which plays important roles in bone metabolism by binding to bone formation regulators.

Conclusions

Our findings suggest the important genetic variants underlying height variation in Chinese.  相似文献   

4.
Pei YF  Zhang L  Yang TL  Han Y  Hai R  Ran S  Tian Q  Shen H  Li J  Zhu XZ  Luo X  Deng HW 《PloS one》2012,7(1):e30860
Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABA(A) receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence.  相似文献   

5.
研究组前期的全基因组关联研究发现PHACTR3基因与骨折关联,为了检测该基因与骨密度的关联关系,采用精细定位关联研究来检测PHACTR3基因内及其附近的SNPs与骨密度的关系。首先在中国样本(1627个不相关的汉族样本)和美国样本(2286个不相关高加索样本)中对PHACTR3基因的140个SNPs进行基因分型,然后采用Plink软件检测PHACTR3基因与腰椎和髋部骨密度的关联关系。发现研究组以前报道的与骨折关联的SNPs rs1555364和rs6064822与腰椎和髋部骨密度关联(P=4.89×10^-2-1.26×10^-2)。另外还发现位于PHACTR3基因内含子中3个SNPs位点(rs6027138,rs1182531和rs1182532)与中国人群和白人腰椎骨密度均显著关联,将中国人与白人样本合并起来进行荟萃分析(Meta—analysis),得到合并P值为1.40×10^-3到4.00×10^-4,另外发现rs6064820与髋部BMD相关联,合并P值为6.70×10^-3。本研究进一步证实了PHACTR3基因在骨密度变异中的作用,对骨质疏松发病机制的认识提供了新的理论依据。  相似文献   

6.
Smoking is a major public health problem, but the genetic factors associated with smoking behaviors are not fully elucidated. Here, we have conducted an integrated genome-wide association study to identify common copy number polymorphisms (CNPs) and single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) in Japanese smokers ( = 17,158). Our analysis identified a common CNP with a strong effect on CPD (rs8102683; ) in the 19q13 region, encompassing the CYP2A6 locus. After adjustment for the associated CNP, we found an additional associated SNP (rs11878604; ) located 30 kb downstream of the CYP2A6 gene. Imputation of the CYP2A6 locus revealed that haplotypes underlying the CNP and the SNP corresponded to classical, functional alleles of CYP2A6 gene that regulate nicotine metabolism and explained 2% of the phenotypic variance of CPD (ANOVA -test ). These haplotypes were also associated with smoking-related diseases, including lung cancer, chronic obstructive pulmonary disease and arteriosclerosis obliterans.  相似文献   

7.
Loss of bone strength is the main determinant of bone fragility. Bone strength is directly dependent on bone size (BS). A substantial portion of BS variation is attributable to genetic effects. However, the list of genes and allelic variants involved in the determination of BS variation is far from being complete. Polymorphisms in the ANKH gene have been shown to be associated with radiographic hand BS-related phenotypes. The present study examined the possible association of the ANKH gene with skeletal size and shape in order to test the universality of the ANKH effect on BS traits. Our sample consisted of a total of 212 ethnically homogeneous nuclear families (743 individuals) of European origin. Each individual was measured for body height, weight, and several other anthropometrical measurements, and genotyped for nine polymorphic markers (the average heterozygosity level was 0.4). We observed significant associations with practically all the anthropometrical phenotypes studied. More specifically, we found associations with body weight and height, limb length (P≤0.001; promoter region). After adjustment for body height, we demonstrated the substantial association increase for biacromial breadth (P=0.0012; some 140 kb downstream from ANKH) and vertebral column length (P=0.0008; exons 2–7 region). The majority of the observed associations persisted even after correction for multiple testing. For the first time the reliable evidence in support of universality of ANKH gene polymorphisms effect on bone size was provided.  相似文献   

8.
骨大小是一种独立于骨密度(BMD)的骨质疏松性骨折的重要风险因子。由于其高遗传率,充分了解控制骨大小的遗传因素有很重要的临床意义。文章研究目的为检测中国人群中α2-HS糖蛋白基因(AHSG)多态性和腰椎及髋部骨大小变异之间的关联。我们总共征集了来自中国401个核心家庭(包括父母亲及至少一个女儿)的1260个研究样本,并且分型了AHSG基因第7个外显子的Sac Ⅰ位点多态性。该位点核苷酸的替换(C→G)引起第238号丝氨酸被苏氨酸取代,因此可能对基因功能有影响。在任何骨骼位点,没有发现显著的群体分层。发现-HSG基因SacⅠ位点多态性和转子间(P=0.019)以及全髋的(P=0.035)骨大小呈显著性相关。该多态性位点能分别解释转子间和全髋3.74%和3.16%的骨大小变异。连锁分析没有检测到显著性结果,可能的主要原因是样本中同胞对的数目较少,统计效力较低,以及SacⅠ位点多态相对于微卫星标记对连锁分析提供的信息量少。结果表明,月HSG基因多态性可能和中国人群中髋部骨大小变异有关。  相似文献   

9.
Guo Y  Liu H  Yang TL  Li SM  Li SK  Tian Q  Liu YJ  Deng HW 《PloS one》2011,6(11):e27312
Obesity and osteoporosis are closely correlated genetically. FTO gene has been consistently identified to be associated with obesity phenotypes. A recent study reported that the mice lacking Fto could result in lower bone mineral density (BMD). Thus, we hypothesize that the FTO gene might be also important for osteoporosis phenotypes. To test for such a hypothesis, we performed an association analyses to investigate the relationship between SNPs in FTO and BMD at both hip and spine. A total of 141 SNPs were tested in two independent Chinese populations (818 and 809 unrelated Han subjects, respectively) and a Caucasian population (2,286 unrelated subjects). Combining the two Chinese samples, we identified 6 SNPs in FTO to be significantly associated with hip BMD after multiple testing adjustments, with the combined P values ranged from 4.99×10−4–1.47×10−4. These 6 SNPs are all located at the intron 8 of FTO and in high linkage disequilibrium. Each copy of the minor allele of each SNP was associated with increased hip BMD values with the effect size (beta) of ∼0.025 and ∼0.015 in the Chinese sample 1 and 2, respectively. However, none of these 6 SNPs showed significant association signal in the Caucasian sample, by presenting some extent of ethnic difference. Our findings, together with the prior biological evidence, suggest that the FTO gene might be a new candidate for BMD variation and osteoporosis in Chinese populations.  相似文献   

10.
Wang C  Hu YM  He JW  Gu JM  Zhang H  Hu WW  Yue H  Gao G  Xiao WJ  Yu JB  Ke YH  Hu YQ  Li M  Liu YJ  Fu WZ  Ren Y  Zhang ZL 《PloS one》2011,6(12):e28874
Low density lipoprotein receptor-related protein 2 gene (LRP2) is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD) phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH)(2)D(3). In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591). BMD values at the lumbar spine 1-4 (L1-4) and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs) in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population.  相似文献   

11.
C-type natriuretic peptide (CNP) was recently found in the myocardium, but possible insights into differences between atrium and ventricle production are so far lacking. Our aim was to evaluate, in an experimental model of pacing-induced heart failure (HF), plasma and tissue levels of CNP and mRNA expression of the peptide and of its specific receptor, NPR-B. Cardiac tissue was collected from male adult minipigs without (control, n=5) and with pacing-induced HF (n=5). Blood samples were collected at baseline and after pacing (10 min, 1, 2, 3 weeks). CNP in plasma and in cardiac extracts was determined by a radioimmunoassay, while the expression of mRNA by real time PCR. Compared to control, plasma CNP was increased after 1 week of pacing stress (36.9+/-10.4 pg/ml vs.16.7+/-1.1, p=0.013, mean+/-S.E.M.). As to myocardial extract, at baseline, CNP was found in all cardiac chambers and its content was 10-fold higher in atria than in ventricles (RA: 13.7+/-1.9 pg/mg protein; LA: 8.7+/-3.8; RV: 1.07+/-0.33; LV: 0.93+/-0.17). At 3 weeks of pacing, myocardial levels of CNP in left ventricle were higher than in controls (15.8+/-9.9 pg/mg protein vs. 0.9+/-0.17, p=0.01). CNP gene expression was observed in controls and at 3 weeks of pacing. NPR-B gene expression was found in all cardiac regions analyzed, and a down-regulation was observed in ventricles after HF. The co-localization of the CNP system and NPR-B suggests a possible role of CNP in HF and may prompt novel therapeutical strategies.  相似文献   

12.
Parathyroid hormone gene with bone phenotypes in Chinese   总被引:3,自引:0,他引:3  
Osteoporosis is a common disorder afflicting old people. The parathyroid hormone (PTH) gene is involved in bone remodeling and calcium homeostasis, and has been considered as an important candidate gene for osteoporosis. In this study, we simultaneously tested linkage and/or association of PTH gene with bone mineral density (BMD) and bone mineral content (BMC), two important risk factors for osteoporosis. A sample of 1263 subjects from 402 Chinese nuclear families was used. The families are composed of both parents and at least one healthy daughter aged from 20 to 45 years. All the subjects were genotyped at the polymorphic BstBI site inside the intron 2 of the PTH gene (a nucleotide substitution of G to A at the position +3244). BMD and BMC were measured at the lumbar spine and the hip region via dual-energy X-ray absorptiometry (DXA). Using QTDT (quantitative trait transmission disequilibrium test), we did not find significant results for association or linkage between the PTH gene and BMD or BMC variation at the spine or hip. Our data do not support the PTH gene as a quantitative trait locus (QTL) underlying the bone phenotypic variation in the Chinese population.  相似文献   

13.
Copy number polymorphism (CNP) is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1), shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection by antifolate drugs, which target enzymes downstream in this pathway. (1) We compared gch1 CNP in parasites from Thailand (strong historical antifolate selection) with those from neighboring Laos (weak antifolate selection). Two percent of chromosomes had amplified copy number in Laos, while 72% carried multiple (2–11) copies in Thailand, and differentiation exceeded that observed at 73 synonymous SNPs. (2) We found five amplicon types containing one to greater than six genes and spanning 1 to >11 kb, consistent with parallel evolution and strong selection for this gene amplification. gch1 was the only gene occurring in all amplicons suggesting that this locus is the target of selection. (3) We observed reduced microsatellite variation and increased linkage disequilibrium (LD) in a 900-kb region flanking gch1 in parasites from Thailand, consistent with rapid recent spread of chromosomes carrying multiple copies of gch1. (4) We found that parasites bearing dhfr-164L, which causes high-level resistance to antifolate drugs, carry significantly (p=0.00003) higher copy numbers of gch1 than parasites bearing 164I, indicating functional association between genes located on different chromosomes but linked in the same biochemical pathway. These results demonstrate that CNP at gch1 is adaptive and the associations with dhfr-164L strongly suggest a compensatory function. More generally, these data demonstrate how selection affects multiple enzymes in a single biochemical pathway, and suggest that investigation of structural variation may provide a fast-track to locating genes underlying adaptation.  相似文献   

14.
15.

Background

We confirmed that the filaggrin gene mutation c.3321delA is associated with atopic dermatitis in our previous genome wide association study of the Chinese Han population. c.3321delA is the most common filaggrin gene mutation in Chinese atopic dermatitis patients but is not present in European populations.

Objective

To investigate the genetic model for the c.3321delA mutation and to determine the correlation between c.3321delA and atopic dermatitis clinical phenotypes in the Chinese Han population.

Method

The filaggrin gene mutation c.3321delA was sequenced in 1,080 atopic dermatitis patients and 908 controls from the Chinese population. The χ2 test, ANOVA,nonparametric tests and logistic regression were used to investigate the relationship between the c.3321delA genotype and atopic dermatitis clinical phenotypes in the Chinese Han population.

Results

Analyses of the genetic model revealed that the additive model best described the c.3321delA mutation (P = 3.09E-11, OR = 3.43, 95%CI = 2.38–4.96). Stratified analyses showed that the c.3321delA allele frequency distribution is significantly associated with concomitant skin xerosis (P = 1.68E-03, OR = 2.13,95%CI = 1.32–3.46), palmar hyperlinearity (P = 3.64E-17, OR = 4.0,95%CI = 2.86–5.70), white dermatographism (P = 4.25E-03, OR = 1.82,95%CI = 1.22–2.71), food intolerance (P = 1.51E-03, OR = 1.76,95%CI = 1.23–2.50) and disease severity ( P = 9.67E-05).

Conclusion

Our study indicates that the filaggrin gene mutation c.3321delA is associated with clinical phenotypes of atopic dermatitis in the Chinese Han population, which might help us gain a better understanding on the pathogenesis of atopic dermatitis.  相似文献   

16.
Coordinated proliferation and differentiation of growth plate chondrocytes is required for endochondral bone growth, but the mechanisms and pathways that control these processes are not completely understood. Recent data demonstrate important roles for nitric oxide (NO) and C-type natriuretic peptide (CNP) in the regulation of cartilage development. Both NO and CNP stimulate the synthesis of cGMP and thus the activation of common downstream pathways. One of these downstream mediators, cGMP-dependent kinase II (cGKII), has itself been shown to be essential for normal endochondral bone formation. This review summarizes our knowledge of the roles and mechanisms of NO, CNP and cGKII signaling in cartilage and endochondral bone development.  相似文献   

17.
Coordinated bone growth is controlled by numerous mechanisms which are only partially understood because of the involvement of many hormones and local regulators. The C-type Natriuretic Peptide (CNP), encoded by NPPC gene located on chromosome 2q37.1, is a molecule that regulates endochondral ossification of the cartilaginous growth plate and influences longitudinal bone growth. Two independent studies have described three patients with a Marfan-like phenotype presenting a de novo balanced translocation involving the same chromosomal region 2q37.1 and overexpression of NPPC. We report on two partially overlapping interstitial 2q37 deletions identified by array CGH. The two patients showed opposite phenotypes characterized by short stature and skeletal overgrowth, respectively. The patient with short stature presented a 2q37 deletion causing the loss of one copy of the NPPC gene and the truncation of the DIS3L2 gene with normal CNP plasma concentration. The deletion identified in the patient with a Marfan-like phenotype interrupted the DIS3L2 gene without involving the NPPC gene. In addition, a strongly elevated CNP plasma concentration was found in this patient. A possible role of NPPC as causative of the two opposite phenotypes is discussed in this study.  相似文献   

18.
Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number.  相似文献   

19.
C-type natriuretic peptide (CNP), a member of the family of natriuretic peptides, is synthesized and secreted from monocytes and macrophages that resulted to be a source of CNP at inflammatory sites. This suggests that special attention should be focused on the possible role of CNP in the immune system, in addition to its effects on the cardiovascular system. The aim of this study was to evaluate the possibility of measuring the mRNA expression of CNP and NPR-B, its specific receptor, in human whole blood samples of healthy (N; n=7) and heart failure (HF; n=7) subjects by Real-Time PCR (RT-PCR). Total RNA was extracted from leukocytes with QIAamp RNA Blood Kit and/or with PAXgene Blood RNA Kit. RT-PCR was performed and optimized for each primer. The experimental results were normalized with the three most stably expressed genes. CNP and NPR-B expression trend was similar in both fresh and frozen human whole blood. Significant higher levels of CNP and NPR-B mRNA expression were found in HF patients with respect to controls (CNP: N=1.23±0.33 vs. HF=6.54±2.09 p=0.027; NPR-B: N=0.85±0.23 vs. HF=5.31±1.98 p=0.04). A significant correlation between CNP and NPR-B (r=0.86, p<0.0001) was observed. Further studies are needed to clarify the pathophysiological properties of this peptide but the possibility to measure CNP and NPR-B mRNA expression in human leukocytes with a fast and easy procedure is a useful starting point for future investigation devoted to better understand the biomolecular processes associated to different diseases.  相似文献   

20.
Multiple lines of evidence suggest that fatty acids (FA) play an important role in cognitive function. However, little is known about the functional genetic pathways involved in cognition. The main goals of this study were to replicate previously reported interaction effects between breast feeding (BF) and FA desaturase (FADS) genetic variation on IQ and to investigate the possible mechanisms by which these variants might moderate BF effect, focusing on brain expression. Using a sample of 534 twins, we observed a trend in the moderation of BF effects on IQ by FADS2 variation. In addition, we made use of publicly available gene expression databases from both humans (193) and mice (93) and showed that FADS2 variants also correlate with FADS1 brain expression (P-value<1.1E-03). Our results provide novel clues for the understanding of the genetic mechanisms regulating FA brain expression and improve the current knowledge of the FADS moderation effect on cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号