首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer’s disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S.

Methodology/Principal Findings

In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue.

Conclusion/Significance

Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.  相似文献   

2.
3.

Background

Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system.

Methodology/Principal Findings

Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging.

Conclusions

Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma.  相似文献   

4.

Objective

Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10.

Materials and Methods

Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction.

Results

Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells.

Conclusion

The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure.  相似文献   

5.

Objective

To investigate the effect of intraventricular injection of human dental pulp stem cells (DPSCs) on hypoxic-ischemic brain damage (HIBD) in neonatal rats.

Methods

Thirty-six neonatal rats (postnatal day 7) were assigned to control, HIBD, or HIBD+DPSC groups (n = 12 each group). For induction of HIBD, rats underwent left carotid artery ligation and were exposed to 8% to 10% oxygen for 2 h. Hoechst 33324-labeled human DPSCs were injected into the left lateral ventricle 3 days after HIBD. Behavioral assays were performed to assess hypoxic-ischemic encephalopathy (HIE), and on postnatal day 45, DPSC survival was assessed and expression of neural and glial markers was evaluated by immunohistochemistry and Western blot.

Results

The HIBD group showed significant deficiencies compared to control on T-maze, radial water maze, and postural reflex tests, and the HIBD+DPSC group showed significant improvement on all behavioral tests. On postnatal day 45, Hoechst 33324-labeled DPSC nuclei were visible in the injected region and left cortex. Subsets of DPSCs showed immunostaining for neuronal (neuron-specific enolase [NSE], Nestin) and glial markers (glial fibrillary acidic protein [GFAP], O4). Significantly decreased staining/expression for NSE, GFAP, and O4 was found in the HBID group compared to control, and this was significantly increased in the HBID+DPSC group.

Conclusion

Intraventricular injection of human DPSCs improves HIBD in neonatal rats.  相似文献   

6.

Background

Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus.

Methodology/Findings

Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation.

Conclusions/Significance

This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.  相似文献   

7.
8.

Background

We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss.

Methodology/Principal Findings

A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro.

Conclusions/Significance

Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I.  相似文献   

9.
10.
J Hou  J Riise  B Pakkenberg 《PloS one》2012,7(8):e43556

Background

Stereology is the study of estimating geometric quantities. When successfully applied, the combination of immunohistochemistry (IHC) and stereology eliminates intra- and interobserver variability for cell type identification.

Methodology/Principal Findings

We propose a method to validate existing antibody based cell type markers for stereological application. Comparison was made on the 100-days-old Göttingen minipig (G-mini) neocortex between estimates of total neuron number derived from Giemsa staining using morphological criteria and immunohistochemistry-based cell counting with NeuN. The mean total neuron numbers estimated by the two staining methods were not significantly different. Estimated quantities, including glial cell number, neocortical volume, cell densities and glial-to-neuron ratio were also presented. Additionally, we assessed other commonly used glial markers and discussed how to evaluate the advantages and disadvantages of these markers for stereological estimation of cell number.

Conclusion/Significance

The concordance in quantitative estimates of total neuron number derived from NeuN- and Giemsa-stained sections provides evidence for the sensitivity and specificity of NeuN as a neuronal marker in the G-mini. Although time-consuming, quantitative validation of IHC should always be considered in stereological studies if there is doubt of the sensitivity, specificity, or reproducibility of cell type markers. Inaccurate staining may cause both over- and underestimation of the total cell number and inflict considerable limitation when analyzing the results.  相似文献   

11.

Objective

To determine the need for routine speciation of positive Lowenstein-Jensen mycobacterial cultures in HIV-infected patients suspected of having pulmonary tuberculosis at Mulago Hospital in Kampala, Uganda.

Methods

Sputum and bronchoalveolar lavage Lowenstein-Jensen mycobacterial culture isolates from consecutive, HIV-infected patients admitted to Mulago Hospital with 2 weeks or more of cough were subjected to IS6110 PCR and rpoB genetic analysis to determine the presence of Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM).

Results

Eighty (100%) mycobacterial cultures from 65 patients were confirmed to be members of MTBC. Subsequent analysis of the cultures from 54 patients by PCR and sequence analyses to identify co-infection with NTM confirmed the presence of MTBC as well as the presence of Micrococcus luteus (n = 4), Janibacter spp. (n = 1) and six cultures had organisms that could not be identified.

Conclusions

Presumptive diagnosis of tuberculosis on the basis of a positive Lowenstein-Jensen culture is sufficient in HIV-infected Ugandans suspected of having tuberculosis. Routine molecular confirmation of positive Lowenstein-Jensen cultures is unnecessary in this low resource setting.  相似文献   

12.

Background

Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.

Methodology/Principal Findings

We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.

Conclusions/Significance

Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on the complete abolishment of spreading depolarizations.  相似文献   

13.

Background

Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline.

Methods

In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week.

Results

Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures.

Conclusions

The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.  相似文献   

14.

Objectives

To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.

Methods

Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.

Results

Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.

Conclusion

Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation.  相似文献   

15.

Background

Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.

Methodology/Principal Findings

Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.

Conclusions/Significance

This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain.  相似文献   

16.

Setting

Seven districts in Andhra Pradesh, South India

Objectives

To a) determine treatment outcomes of patients who fail first line anti-TB treatment and are not placed on an multi-drug resistant TB (MDR-TB) regimen, and b) relate the treatment outcomes to culture and drug susceptibility patterns (C&DST).

Design

Retrospective cohort study using routine programme data and Mycobacterium TB Culture C&DST between July 2008 and December 2009.

Results

There were 202 individuals given a re-treatment regimen and included in the study. Overall treatment outcomes were: 68 (34%) with treatment success, 84 (42%) failed, 36 (18%) died, 13 (6.5%) defaulted and 1 transferred out. Treatment success for category I and II failures was low at 37%. In those with positive cultures, 81 had pan-sensitive strains with 31 (38%) showing treatment success, while 61 had drug-resistance strains with 9 (15%) showing treatment success. In 58 patients with negative cultures, 28 (48%) showed treatment success.

Conclusion

Treatment outcomes of patients who fail a first-line anti-TB treatment and who are not placed on an MDR-TB regimen are unacceptably poor. The worst outcomes are seen among category II failures and those with negative cultures or drug-resistance. There are important programmatic implications which need to be addressed.  相似文献   

17.

Background

Early administration of appropriate antibiotic therapy in bacteraemia patients dramatically reduces mortality. A new method for RApid Molecular Antibiotic Susceptibility Testing (RAMAST) that can be applied directly to positive blood cultures was developed and evaluated.

Methodology/Principal Findings

Growth curves and antibiotic susceptibility of blood culture isolates (Staphylococcus aureus, enterococci and (facultative) aerobic Gram-negative rods) were determined by incubating diluted blood cultures with and without antibiotics, followed by a quantitative universal 16S PCR to detect the presence or absence of growth. Testing 114 positive blood cultures, RAMAST showed an agreement with microbroth dilution of 96.7% for Gram-negative rods, with a minor error (false-susceptibility with a intermediate resistant strain) rate of 1.9%, a major error (false resistance) rate of 0.8% and a very major error (false susceptibility) rate of 0.6%. Agreement for S.aureus was 97.9%, with a very major error rate of 2.1%. Enterococcus species showed 95.0% agreement, with a major error rate of 5.0%. These agreements are comparable with those of the Phoenix system. Starting from a positive blood culture, the test was completed within 9 hours.

Conclusions/Significance

This new rapid method for antibiotic susceptibility testing can potentially provide accurate results for most relevant bacteria commonly isolated from positive blood cultures in less time than routine methods.  相似文献   

18.

Background

Extremely preterm infants are at high risk of neonatal mortality and adverse outcome. Survival rates are slowly improving, but increased survival may come at the expense of more handicaps.

Methodology/Principal Findings

Prospective population-based cohort study of all infants born at 23 to 27 weeks of gestation in the Netherlands in 2007. 276 of 345 (80%) infants were born alive. Early neonatal death occurred in 96 (34.8%) live born infants, including 61 cases of delivery room death. 29 (10.5%) infants died during the late neonatal period. Survival rates for live born infants at 23, 24, 25 and 26 weeks of gestation were 0%, 6.7%, 57.9% and 71% respectively. 43.1% of 144 surviving infants developed severe neonatal morbidity (retinopathy of prematurity grade ≥3, bronchopulmonary dysplasia and/or severe brain injury). At two years of age 70.6% of the children had no disability, 17.6% was mild disabled and 11.8% had a moderate-to-severe disability. Severe brain injury (p = 0.028), retinopathy of prematurity grade ≥3 (p = 0.024), low gestational age (p = 0.019) and non-Dutch nationality of the mother (p = 0.004) increased the risk of disability.

Conclusions/Significance

52% of extremely preterm infants born in the Netherlands in 2007 survived. Surviving infants had less severe neonatal morbidity compared to previous studies. At two years of age less than 30% of the infants were disabled. Disability was associated with gestational age and neonatal morbidity.  相似文献   

19.

Background

Gap junction communication has been shown in glial and neuronal cells and it is thought they mediate inter- and intra-cellular communication. Connexin 36 (Cx36) is expressed extensively in the developing brain, with levels peaking at P14 after which its levels fall and its expression becomes entirely neuronal. These and other data have led to the hypothesis that Cx36 may direct neuronal coupling and neurogenesis during development.

Methodology/Principal Findings

To investigate Cx36 function we used a neurosphere model of neuronal cell development and developed lentiviral Cx36 knockdown and overexpression strategies. Cx36 knockdown was confirmed by western blotting, immunocytochemistry and functionally by fluorescence recovery after photobleaching (FRAP). We found that knockdown of Cx36 in neurosphere neuronal precursors significantly reduced neuronal coupling and the number of differentiated neurons. Correspondingly, the lentiviral mediated overexpression of Cx36 significantly increased the number of neurons derived from the transduced neurospheres. The number of oligodendrocytes was also significantly increased following transduction with Cx36 indicating they may support neuronal differentiation.

Conclusions/Significance

Our data suggests that astrocytic and neuronal differentiation during development are governed by mechanisms that include the differential expression of Cx36.  相似文献   

20.
Low LA  Fitzgerald M 《PloS one》2012,7(3):e34316

Background

The importance of neonatal experience upon behaviour in later life is increasingly recognised. The overlap between pain and reward pathways led us to hypothesise that neonatal pain experience influences reward-related pathways and behaviours in adulthood.

Methodology/Principal Findings

Rat pups received repeat plantar skin incisions (neonatal IN) or control procedures (neonatal anesthesia only, AN) at postnatal days (P)3, 10 and 17. When adult, rats with neonatal ‘pain history’ showed greater sensory sensitivity than control rats following acute plantar skin incision. Motivational behaviour in the two groups of rats was tested in a novelty-induced hypophagia (NIH) paradigm. The sensitivity of this paradigm to pain-induced changes in motivational behaviour was shown by significant increases in the time spent in the central zone of the arena (43.7±5.9% vs. 22.5±6.7%, p<0.05), close to centrally placed food treats, and decreased number of rears (9.5±1.4 vs. 19.2±2.3, p<0.001) in rats with acute plantar skin incision compared to naive, uninjured animals. Rats with a neonatal ‘pain history’ showed the same pain-induced behaviour in the novelty-induced hypophagia paradigm as controls. However, differences were observed in reward-related neural activity between the two groups. Two hours after behavioural testing, brains were harvested and neuronal activity mapped using c-Fos expression in lateral hypothalamic orexin neurons, part of a specific reward seeking pathway. Pain-induced activity in orexin neurons of control rats (18.4±2.8%) was the same as in uninjured naive animals (15.5±2.6%), but in those rats with a ‘pain history’, orexinergic activity was significantly increased (27.2±4.1%, p<0.01). Furthermore the extent of orexin neuron activation in individual rats with a ‘pain history’ was highly correlated with their motivational behaviour (r = −0.86, p = 0.01).

Conclusions/Significance

These results show that acute pain alters motivational behaviour and that neonatal pain experience causes long-term changes in brain motivational orexinergic pathways, known to modulate mesolimbic dopaminergic reward circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号