首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we explore how the results of a primate-wide higher-level phylogenetic analysis of muscle characters can improve our understanding of the evolution and homologies of the forearm and hand muscles of modern humans. Contrary to what is often suggested in the literature, none of the forearm and hand muscle structures usually present in modern humans are autapomorphic. All are found in one or more extant non-human primate taxa. What is unique is the particular combination of muscles. However, more muscles go to the thumb in modern humans than in almost all other primates, reinforcing the hypothesis that focal thumb movements probably played an important role in human evolution. What makes the modern human thumb myology special within the primate clade is not so much its intrinsic musculature but two extrinsic muscles, extensor pollicis brevis and flexor pollicis longus, that are otherwise only found in hylobatids. It is likely that these two forearm muscles play different functional roles in hylobatids and modern humans. In the former, the thumb is separated from elongated digits by a deep cleft and there is no pulp-to-pulp opposition, whereas modern humans exhibit powerful thumb flexion and greater manipulative abilities, such as those involved in the manufacture and use of tools. The functional and evolutionary significance of a third peculiar structure, the intrinsic hand structure that is often called the ‘interosseous volaris primus of Henle’ (and which we suggest is referred to as the musculus adductor pollicis accessorius) is still obscure. The presence of distinct contrahentes digitorum and intermetacarpales in adult chimpanzees is likely the result of prolonged or delayed development of the hand musculature of these apes. In relation to these structures, extant chimpanzees are more neotenic than modern humans.  相似文献   

2.
This study investigates the morphological basis of differences between humans and chimpanzees in the kinematical and dynamical parameters of the musculature of the thumb. It is partly intended to test an hypothesis that human thumb muscles can exert significantly greater torques, due to larger muscle cross-sectional areas or to longer tendon moment arms or to both. We focus on the estimation of the potentials of thumb muscles to exert torques about joint axes in a sample of eight chimpanzee cadaver hands. The potential torque of a muscle is estimated by taking the product of a muscle's physiological cross-sectional area (an estimator of force) with its dynamical moment arm (derived from the slope of tendon excursion versus joint angular displacement, obtained during passive movements of cadaver thumb joints). Comparison of our results with similar data obtained for humans at the same Mayo Clinic laboratory shows significant differences between humans and chimpanzees in potential torque of most thumb muscles, those of humans generally exhibiting larger values. The primary reason for the larger torques in humans is that their average moment arms are significantly longer, permitting greater torque for a given muscle size. An additional finding is that chimpanzees and humans differ in the direction of secondary thumb metacarpal movements elicited by contraction of some muscles, as shown by differences in moment arm signs for a given movement in the same muscle. The differences appear to be related to differences in the musculo-skeletal structures of the trapeziometacarpal joint.  相似文献   

3.
We observed grips by the hand during locomotor and manipulative behavior of captive chimpanzees to improve our ability to interpret differences between chimpanzees and humans in hand morphology that are not easily explained by current behavioral data. The study generated a new classification of grips,which takes into account three elements of precision and power gripping that appear to distinguish between the chimpanzees and humans, and which have not been explored previously in relation to hand morphology. These elements are (1) the relative force of the precision grips (pinch versus hold), (2) the relative ability to translate and rotate objects by the thumb and fingers (precision handling), and (3) the relative ability to orient a cylindrical object so that it functions effectively as an extension of the forearm (power squeeze). We recommend that this classification be incorporated into protocols for field and laboratory studies of nonhuman primate manipulative behavior, in order to test our prediction that these three elements clearly distinguish humans from chimpanzees and other nonhuman primates. The results of this test will have direct bearing upon decisions as to which grips (with their associated behaviors) are most likely to guide us through kinematic and kinetic analysis to possible explanations for morphological differences between humans and other species. These explanations, in turn, are fundamental to our ability to discern evidence for potential grips and tool behaviors in the manual morphology of fossil hominids.  相似文献   

4.
We compared the thumb morphology ofCebus apella to that of several other primate species in order to determine whether robust thumbs are associated with tool-use. We found that thumb robusticity was greater forCebus apella than for all other represented nonhuman species exceptGorilla gorilla. Further, thumb robusticity inCebus apella was similar to that ofAustralopithecus afarensis but lesser than that of other represented hominids, including modern humans. We propose that precision gripping similar to that which occurs in tool-using context amongCebus probably occurred among Australopithecines prior to the emergence of sophisticated tool behavior amongHomo andParanthropus.  相似文献   

5.
We dissected the forearms and hands of a female chimpanzee and systematically recorded mass, fiber length, and physiological cross-sectional area (PCSA) of all muscles including those of intrinsic muscles that have not been reported previously. The consistency of our measurements was confirmed by comparison with the published data on chimpanzees. Comparisons of the hand musculature of the measured chimpanzee with corresponding published human data indicated that the chimpanzee has relatively larger forearm flexors but smaller thenar eminence muscles, as observed in previous studies. The interosseous muscles were also confirmed to be relatively larger in the chimpanzee. However, a new finding was that relative PCSA, which reflects a muscles capacity to generate force, might have increased slightly in humans as a result of relatively shorter muscle fiber length. This suggests that the human intrinsic muscle architecture is relatively more adapted to dexterous manipulative functions. Shortening of the metacarpals and the intervening interosseous muscles might accordingly be a prerequisite for the evolution of human precision-grip capabilities.  相似文献   

6.
The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.  相似文献   

7.
Extant apes are similar to one another, and different from monkeys, in features granting them greater range of forearm rotation and greater size of the muscles that produce this motion. Although these traits may have been independently acquired by the various apes, the possibility arises that such features reflect adaptation to the stem behavior of the hominoid lineage. Anticipating that knowledge of forearm rotatory muscle recruitment during brachiation, vertical climbing, arm-hanging during feeding, and voluntary reaching might point to this stem behavior, we undertook telemetered electromyographic experiments on the supinator, pronator quadratus, ulnar head of pronator teres, and a variety of other upper limb muscles in two gibbons and four chimpanzees. The primary rotator muscles of the hominoid forearm were recruited at high levels in a variety of behaviors. As had been suspected by previous researchers, the supinator is usually active during the support phase of armswinging, but we observed numerous instances of this behavior during which the muscle was inactive. No other muscle took over its role. Kinetic analyses are required to determine how apes can execute body rotation of armswinging without active muscular effort. The one behavior that is common to most extant apes, is rare in monkeys, and which places a consistently great demand on the primary forearm rotatory muscles, is hang-feeding. The muscles of the supporting limb are essential to properly position the body; those of the free limb are essential for grasping food. Since the greater range of forearm rotation characterizing apes is also best explained by adaptation to this behavior, we join previous authors who assert that it lies at the very origin of the Hominoidea.  相似文献   

8.
This paper supplies quantitative data on the hind- and forelimb musculature of common chimpanzees (Pan troglodytes) and calculates maximum joint moments of force as a contribution to a better understanding of the differences between chimpanzee and human locomotion. We dissected three chimpanzees, and recorded muscle mass, fascicle length, and physiological cross-sectional area (PCSA). We also obtained flexion/extension moment arms of the major muscles about the limb joints. We find that in the hindlimb, chimpanzees possess longer fascicles in most muscles but smaller PCSAs than are predicted for humans of equal body mass, suggesting that the adaptive emphasis in chimpanzees is on joint mobility at the expense of tension production. In common chimpanzee bipedalism, both hips and knees are significantly more flexed than in humans, necessitating muscles capable of exerting larger moments at the joints for the same ground force. However, we find that when subject to the same stresses, chimpanzee hindlimb muscles provide far smaller moments at the joints than humans, particularly the quadriceps and plantar flexors. In contrast, all forelimb muscle masses, fascicle lengths, and PCSAs are smaller in humans than in chimpanzees, reflecting the use of the forelimbs in chimpanzee, but not human, locomotion. When subject to the same stresses, chimpanzee forelimb muscles provide larger moments at the joints than humans, presumably because of the demands on the forelimbs during locomotion. These differences in muscle architecture and function help to explain why chimpanzees are restricted in their ability to walk, and particularly to run bipedally.  相似文献   

9.
Capuchin monkeys (genus Cebus) have evolutionarily converged with humans and chimpanzees in a number of ways, including large brain size, omnivory and extractive foraging, extensive cooperation and coalitionary behaviour and a reliance on social learning. Recent research has documented a richer repertoire of group-specific social conventions in the coalition-prone Cebus capucinus than in any other non-human primate species; these social rituals appear designed to test the strength of social bonds. Such diverse social conventions have not yet been noted in Cebus apella, despite extensive observation at multiple sites. The more robust and widely distributed C. apella is notable for the diversity of its tool-use repertoire, particularly in marginal habitats. Although C. capucinus does not often use tools, white-faced capuchins do specialize in foods requiring multi-step processing, and there are often multiple techniques used by different individuals within the same social group. Immatures preferentially observe foragers who are eating rare foods and hard-to-process foods. Young foragers, especially females, tend to adopt the same foraging techniques as their close associates.  相似文献   

10.
We examined growth changes in concentrations of plasma insulin-like growth factor-1 (IGF-1) and testosterone, and somatometric parameters in two captive male agile gibbons from birth to about 4 years of age, to examine the evolution of growth patterns in primates. Plasma IGF-1 concentrations in agile gibbons generally increased with age with values ranging from 200 to 1,100 ng/ml. The growth profiles in plasma IGF-1 in the gibbons were similar to those reported for chimpanzees. The highest concentrations of plasma testosterone (230 and 296 ng/dl) were observed within the first 0.3 years from birth, then the concentrations rapidly decreased and fluctuated below 100 ng/dl. Continuously higher IGF-1 concentrations were observed after 2.6 and 3.5 years of age. The profiles of plasma testosterone in these gibbons also resembled those of other primates including humans. However, their plasma testosterone levels in both neonate and adult stages (60 ng/dl) were lower than those reported for macaques and chimpanzees of respective stages. The obtained growth profiles of plasma IGF-1 and testosterone suggest that the adolescent phase starts around 2.6 or 3.5 years of age in male agile gibbons. The growth trend in many morphological parameters including body weight showed a linear increase without a significant growth spurt at approximately the onset of puberty. Head length and first digit length had reached a plateau during the study period. Brachial index, which indicates the relative length of forearm to upper arm, significantly increased gradually through the growth period. This result indicates that forearm becomes relatively longer than the upper arm with growth, which may be an evolutionary adaptation for brachiation.  相似文献   

11.
Surprisingly little is known about the eye movements of chimpanzees, despite the potential contribution of such knowledge to comparative cognition studies. Here, we present the first examination of eye tracking in chimpanzees. We recorded the eye movements of chimpanzees as they viewed naturalistic pictures containing a full-body image of a chimpanzee, a human or another mammal; results were compared with those from humans. We found a striking similarity in viewing patterns between the two species. Both chimpanzees and humans looked at the animal figures for longer than at the background and at the face region for longer than at other parts of the body. The face region was detected at first sight by both species when they were shown pictures of chimpanzees and of humans. However, the eye movements of chimpanzees also exhibited distinct differences from those of humans; the former shifted the fixation location more quickly and more broadly than the latter. In addition, the average duration of fixation on the face region was shorter in chimpanzees than in humans. Overall, our results clearly demonstrate the eye-movement strategies common to the two primate species and also suggest several notable differences manifested during the observation of pictures of scenes and body forms.  相似文献   

12.
In a study by Tanaka (2003) five captive chimpanzees preferred photographs of humans to those of chimpanzees. All the subjects were raised by humans and lived in captivity for many years. This suggests their preference might have developed through social experience. In this study examined this hypothesis by using three young chimpanzees raised by their mothers in a captive chimpanzee community. The young chimpanzees were tested four times before six years of age. I also tested eight adult chimpanzees that had been in captivity for more than 20 years. Each subject was presented with digitized color photographs of different species of primates on a touch-sensitive screen. The subjects received a food reward when they touched a photograph, irrespective of which photograph they touched. All the adult chimpanzees touched photographs of humans more frequently than those of any other species of primate. Two of the young chimpanzees showed no species preference before reaching 5 years of age, when they started to show preference for humans. The remaining young chimpanzee consistently preferred chimpanzees. These results suggest that development of visual preference of chimpanzees is affected by social experience during infancy.  相似文献   

13.
Recent studies have indicated that chimpanzee bipedality is mechanically inefficient and dynamically unlike that of humans, thus undermining the chimpanzee analogy for mechanical aspects of the early evolution of hominid bipedalism. This paper continues this theme by measuring the forces and stresses engendered by the muscles during bipedal locomotion, for an untrained chimpanzee and for data from chimpanzees which have been encouraged to walk bipedally, presented in the literature. Peak stresses in the triceps surae were lower for the untrained chimpanzee than for the trained subjects because during the late stance phase, when peak ankle moments occur, the centre of pressure of the ground reaction force on the foot of the untrained chimpanzee stayed close to the ankle joint. In contrast, for the trained subjects it moved closer to the toes, as in human bipedalism. Quadriceps and hip extensor stresses are approximately 30% larger for the untrained chimpanzee than for the trained subjects, because the trained chimpanzees walked with a more erect posture. These results may reflect the way in which muscles can develop in response to training, since research on humans has shown that muscle physiological cross-sectional area increases as a result of exercise, resulting in smaller stresses for a given muscle force. During a slow walk, untrained chimpanzees were found to exert far greater muscle stresses than humans do when running at moderate speed, particularly in the muscles that extend the hip, because of the bent-hip, bent-knee posture.  相似文献   

14.
This study asks whether there are discernable links between precision gripping, tool behaviors,
  • 1 The term “tool behavior” has been variously used in the literature, in some cases implying exclusively tool making distinctive of humans (Susman, 1991) and in others referring variably to tool using and/or tool-making abilities, some shared with us by other animals (Susman, 1988a,b, 1994). In this paper the term is used to include both tool using and tool making behaviors of humans and non-humans; the term “tool making” is used in place of “tool behavior” whenever the discussion is focused upon distinguishing a capacity for removing flakes from stone preforms from a more general capacity to manipulate stone tools.
  • and hand morphology in modern hominoids, which may guide functional interpretation of early hominid hand morphology. Findings from a three-pronged investigation answer this question in the affirmative, as follows. (1) Experimental manufacture of early prehistoric tools provides evidence of connections between distinctive human precision grips and effective tool making. (A connection is not found between the “fine” thumb/index finger pad precision grip and early tool making.) (2) Manipulative behavior studies of chimpanzees, hamadryas baboons, and humans show that human precision grips are distinguished by the greater force with which objects may be secured by the thumb and fingers of one hand (precision pinching) and the ability to adjust the orientation of gripped objects through movements at joints distal to the wrist (precision handling). (3) Morphological studies reveal eight features distinctive of modern humans which facilitate use of these grips. Among these features are substantially larger moment arms for intrinsic muscles that stabilize the proximal thumb joints. Examination of evidence for these reveals that three of the eight features occur in Australopithecus afarensis, but limited thumb mobility would have compromised tool making. Also, Olduvai hand morphology strongly suggests a capacity for stone tool making. However, functional and behavioral implications of Sterkfontein and Swartkrans hand morphology are less clear. At present, no single skeletal feature can be safely relied upon as an indicator of distinctively human capabilities for precision gripping or tool making in fossil hominids. Am J Phys Anthropol 102:91–110, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    15.
    Thorpe et al. (Am J Phys Anthropol 110:179–199, 1999) quantified chimpanzee (Pan troglodytes) muscle architecture and joint moment arms to determine whether they functionally compensated for structural differences between chimpanzees and humans. They observed enough distinction to conclude that musculoskeletal properties were not compensatory and suggested that chimpanzees and humans do not exhibit dynamically similar movements. These investigators based their assessment on unilateral limb musculatures from three male chimpanzees, of which they called one non-adult representative. Factors such as age, sex, and behavioral lateralization may be responsible for variation in chimpanzee muscle architecture, but this is presently unknown. While the full extent of variation in chimpanzee muscle architecture due to such factors cannot be evaluated with data presently available, the present study expands the chimpanzee dataset and provides a preliminary glimpse of the potential relevance of these factors. Thirty-seven forelimb and 36 hind limb muscles were assessed in two chimpanzee cadavers: one unilaterally (right limbs), and one bilaterally. Mass, fiber length, and physiological cross-sectional area (PCSA) are reported for individual muscles and muscle groups. The musculature of an adult female is more similar in architectural patterns to a young male chimpanzee than to humans, particularly when comparing muscle groups. Age- and sex-related intraspecific differences do not obscure chimpanzee-human interspecific differences. Side asymmetry in one chimpanzee, despite consistent forelimb directional asymmetry, also does not exceed the magnitude of chimpanzee-human differences. Left forelimb muscles, on average, usually had higher masses and longer fiber lengths than right, while right forelimb muscles, on average, usually had greater PCSAs than left. Most muscle groups from the left forelimb exhibited greater masses than right groups, but group asymmetry was significant only for the manual digital muscles. The hind limb exhibited less asymmetry than the forelimb in most comparisons. Examination of additional chimpanzees would clarify the full range of inter- and intra-individual variation.  相似文献   

    16.
    It has been proposed that human cooperation is unique among animals for its scale and complexity, its altruistic nature and its occurrence among large groups of individuals that are not closely related or are even strangers. One potential solution to this puzzle is that the unique aspects of human cooperation evolved as a result of high levels of lethal competition (i.e. warfare) between genetically differentiated groups. Although between-group migration would seem to make this scenario unlikely, the plausibility of the between-group competition model has recently been supported by analyses using estimates of genetic differentiation derived from contemporary human groups hypothesized to be representative of those that existed during the time period when human cooperation evolved. Here, we examine levels of between-group genetic differentiation in a large sample of contemporary human groups selected to overcome some of the problems with earlier estimates, and compare them with those of chimpanzees. We find that our estimates of between-group genetic differentiation in contemporary humans are lower than those used in previous tests, and not higher than those of chimpanzees. Because levels of between-group competition in contemporary humans and chimpanzees are also similar, these findings suggest that the identification of other factors that differ between chimpanzees and humans may be needed to provide a compelling explanation of why humans, but not chimpanzees, display the unique features of human cooperation.  相似文献   

    17.
    With a free-choice task, visual preference was estimated in five adult chimpanzees (Pan troglodytes). The subjects were presented with digitized color photographs of various species of primates on a CRT screen. Their touching responses to the photographs were reinforced by food reward irrespective of which photographs they touched. The results revealed that all chimpanzees touched the photographs of humans significantly more than any other species, or phylogenetic families of primates. This tendency was consistent across different stimulus sets. The results suggest that the chimpanzees showed visual preference for the photographs of humans over those of their own species. The results also suggest that the degree of this visual preference was not in accordance with phylogenetic distance from the subjects' species, chimpanzees. The preference for humans was stronger in the case of the colored photographs than in monochromatic ones. All of the five chimpanzees had been in captivity for at least 16 years. They were reared by humans from just after their birth, or at least from 1.5 years old. Their preference might have developed through social experience, especially that during infanthood. Electronic Publication  相似文献   

    18.
    Selection and transport of objects to use as tools at a distant site are considered to reflect planning. Ancestral humans transported tools and tool-making materials as well as food items. Wild chimpanzees also transport selected hammer tools and nuts to anvil sites. To date, we had no other examples of selection and transport of stone tools among wild nonhuman primates. Wild bearded capuchins (Cebus libidinosus) in Boa Vista (Piauí, Brazil) routinely crack open palm nuts and other physically well-protected foods on level surfaces (anvils) using stones (hammers) as percussive tools. Here we present indirect evidence, obtained by a transect census, that stones suitable for use as hammers are rare (study 1) and behavioral evidence of hammer transport by twelve capuchins (study 2). To crack palm nuts, adults transported heavier and harder stones than to crack other less resistant food items. These findings show that wild capuchin monkeys selectively transport stones of appropriate size and hardness to use as hammers, thus exhibiting, like chimpanzees and humans, planning in tool-use activities.  相似文献   

    19.
    This study is a geographically systematic genetic survey of the easternmost subspecies of chimpanzee, Pan troglodytes schweinfurthii. DNA was noninvasively collected in the form of shed hair from chimpanzees of known origin in Uganda, Rwanda, Tanzania, and Zaire. Two hundred sixty-two DNA sequences from hypervariable region 1 of which of the mitochondrial control region were generated. Eastern chimpanzees display levels of mitochondrial genetic variation which are low and which are similar to levels observed in humans (Homo sapiens). Also like humans, between 80% and 90% of the genetic variability within the eastern chimpanzees is apportioned within populations. Spatial autocorrelation analysis shows that genetic similarity between eastern chimpanzees decreases clinically with distance, in a pattern remarkably similar to one seen for humans separated by equivalent geographic distances. Eastern chimpanzee mismatch distributions (frequency distributions of pairwise genetic differences between individuals) are similar in shape to those for humans, implying similar population histories of recent demographic expansion. The overall pattern of genetic variability in eastern chimpanzees is consistent with the hypothesis that the subject has responded demographically to paleoclimatically driven changes in the distribution of eastern African forests during the recent Pleistocene.   相似文献   

    20.
    The cross-sectional geometric parameters were determined serially along the diaphysis of 3 paired humeri and femora of chimpanzees by using the computed X-ray tomographic scans, and compared with those of humans. In magnitude, the femoral parameters were greater and humeral parameters were less, respectively, in humans than in chimpanzees. While the changing pattern among the parameters along the diaphysis was very similar both in the femur and humerus of chimpanzees, the pattern in the humans was reversed between the cross-sectional area and area moments of inertia. In chimpanzees, the femoral parameters increased toward the most proximal diaphysis, whereas humeral parameters yielded a moderate peak in a portion slightly proximal to mid-shaft. Potential mechanisms responsible for these findings were discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号