首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We have synthetised 8-(2-4 dinitrophenyl 2-6 aminohexyl) amino-adenosine 5' triphosphate (in short : rATP-DNP), a derivative of ATP which carries a dinitrophenyl group. We show that rATP-DNP is a substrate for calf thymus deoxynucleotidyl terminal transferase (EC 2.7.7.31) and E. coli DNA polymerase I (Kornberg polymerase EC 2.7.7.7.). It can therefore be incorporated into DNA molecules by elongation from 3' ends or by nick translation. The incorporated dinitrophenyl group can be recognized by specific antibodies which can then be detected by anti-antibodies coupled to an enzyme. DNP groups could also be introduced into DNA after enzymatic incorporation of 8-aminohexyl adenosine 5' triphosphate and reaction with 1-fluoro-2-4-dinitrobenzene. Thus, DNA molecules carrying DNP groups can ultimately be revealed by enzymatic coloured reactions. Potential uses of this enzymatic labelling as a substitute to the radioactive detection of nucleic acids, are discussed.  相似文献   

2.
Terminal deoxynucleotidyltransferase has been purified from lymphoblasts of leukemic patients. The enzyme has a molecular weight of approximately 62,000 as determined by gel filtration and nondenaturing gel electrophoresis and is not dissociated into subunits by sodium dodecyl sulfate. In contrast, the terminal transferase enzyme from calf thymus has a molecular weight of 42,000 as determined by gel filtration, and is dissociated into 2 subunits of Mr 30,000 and 8,000 by sodium dodecyl sulfate. The enzyme has an isoelectric point of 8.2 and kinetic characteristics which are similar to those of calf thymus terminal transferase. The apparent Km for purine nucleotide polymerization at saturating initiator concentration with Mg2+ is 0.2 mM and with Mn2+ is 0.05 mM. Like calf terminal transferase, the reaction velocity is higher in the presence of Mg2+ than Mn2+. ATP inhibits the reaction catalyzed by terminal transferase isolated from human lymphoblasts due to mutual recognition of ATP and dATP by a common site on the enzyme. Preliminary experiments indicate that human terminal transferase may contain a small amount of carbohydrate. This report represents the first purification to near homogeneity of terminal transferase from a tissue source other than calf thymus.  相似文献   

3.
The mechanism of biosynthetic, transferase, ATPase, and transphosphorylation reactions catalyzed by unadenylylated glutamine synthetase from E. coli was studied. Activation complex(es) involved in the biosynthetic reaction are produced in the presence of either Mg2+ or Mn2+ ; however, with the Mn2+-enzyme inhibition by the product, ADP, is so great that the overall forward biosynthetic reaction cannot be detected with the known assay methods. Binding studies show that substrates (except for NH3 and NH2OH which are not reported here) can bind to the enzyme in a random manner and that binding of the ATP-glutamate, ADP-Pi or ADP-arsenate pairs is strongly synergistic. Inhibition and binding studies show that the same binding site is utilized for glutamate and glutamine in biosynthetic and transferase reactions, respectively, and that a common nucleotide binding site is used for all reactions studied. Studies of the reverse biosynthetic reaction and results of fluorescent titration experiments suggest that both arsenate and orthophosphate bind at a site which overlaps the gamma-phosphate site of nucleoside triphosphate. In the reverse biosynthetic and transferase reactions, ATP serves as a substrate for the Mn2+-enzyme but not for the Mg2+-enzyme. The ATP supported transferase activity of Mn2+-enzyme is probably facilitated by the generation of ADP through ATP hydrolysis. When AMP was the only nucleotide substrate added, it was converted to ATP with concomitant formation of two equivalents of glutamate, under the reverse biosynthetic reaction conditions, and no ADP was detected. The reversibility of 180 transfer between orthophosphate and gamma-acyl group of glutamate was confirmed. ATPase activity of Mg2+ and Mn2+ unadenylylated enzymes is about the same. Both enzymes forms catalyze transphosphorylation reactions between various purine nucleoside triphosphates and nucleoside diphosphates under biosynthetic reaction conditions. The data are consistent with the hypothesis that a single active center is utilized for all reactions studied. Two stepwise mecanisms that could explain the results are discussed.  相似文献   

4.
Inhibition of milk xanthine oxidase by fluorodinitrobenzene   总被引:1,自引:0,他引:1  
Milk xanthine oxidase reacted with fluorodinitrobenzene resulting in the modification of two lysine residues with a 6-fold decrease in catalytic activity. Continued reaction with fluorodinitrobenzene up to a total of 11 dinitrophenyl residues/equivalent of enzyme-bound FAD resulted in no further decrease in activity. Stopped flow studies revealed that the modification perturbed the reduction of the enzyme by xanthine; this was 6-fold lower with modified than with native enzyme. The reaction of the reduced modified enzyme with oxygen was qualitatively and quantitatively the same as with native enzyme. One nitro group of each dinitrophenyl lysine residue is slowly reduced by xanthine; reduction of both nitro groups is achieved by dithionite. The two dinitrophenyl lysine reduces can be distinguished on the basis of their kinetics of reduction. One appears to be located on the protein surface and is reduced in an intermolecular reaction, while the other appears to be located in a pocket of the enzyme and is reduced in a slow intramolecular reaction.  相似文献   

5.
The specificity of the ATP:corrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica serovar Typhimurium LT2 for its nucleotide substrate was tested using ATP analogs and alternative nucleotide donors. The enzyme showed broad specificity for the nucleotide base and required the 2'-OH group of the ribosyl moiety of ATP for activity. (31)P NMR spectroscopy was used to identify inorganic triphosphate (PPP(i)) as the byproduct of the reaction catalyzed by the CobA enzyme. Cleavage of triphosphate into pyrophosphate and orthophosphate did not occur, indicating that triphosphate cleavage was not required for release of the adenosylcorrinoid product. Triphosphate was a strong inhibitor of the reaction, with 85% of CobA activity lost when the ATP/PPP(i) ratio present in the reaction mixture was 1:2.5.  相似文献   

6.
Anthony Haystead 《Planta》1973,111(3):271-274
Summary A glutamine synthetase has been localised in the chloroplasts of Vicia faba. The enzyme has requirements for Mg2+ and ATP in the biosynthetic reaction and in addition will catalyse a -glutamyl transferase reaction in the presence of Mn2+ and arsenate. The enzyme is inhibited by AMP, CTP, glycine and alanine. These results are discussed in relation to the possible chloroplastic synthesis of nucleotide bases. Estimations of glutamine amide-2-oxoglutarate amino transferase (oxido-reductase) have demonstrated only low levels of activity in the chloroplast extracts. This enzyme is generally active in organisms where GS has an assimilary role. It is coneluded that glutamine synthetase has a biosynthetic and not an assimilatory role in the chloroplast.  相似文献   

7.
In order to investigate the structure of the active site of the cAMP-dependent protein kinase catalytic subunit a synthesis of several previously unknown adenosine-5'-triphosphate (ATP) derivatives containing substituents of various nature at N(1), N(C6) and C(8) positions of the purine base was carried out. The interaction of these derivatives with a homogeneous preparation of the catalytic subunit of rabbit skeletal muscle cAMP-dependent protein kinase was investigated. All the nucleotide analogs were found to inhibit the enzyme activity; the inhibition was competitive with respect to ATP. It was assumed that the adenine moiety of the ATP molecule is bound to the active site of protein kinase by the hydrophobic interaction with the aromatic amino acid residues and by formation of the hydrogen bond between the exo-NH2-group of the substrate and a corresponding group of the enzyme. The "correct" binding of ATP to the enzyme active center is defined by the anti-conformation of the nucleotide.  相似文献   

8.
The interferon-induced enzyme 2-5A synthetase is shown to adenylate tRNA. Yeast tRNAPhe was incubated with the enzyme in the presence of double stranded RNA (in this case polyI-polyC) and ATP or deoxyATP. The reaction products were analyzed by ribonuclease T1 digestion of the tRNA, polyacrylamide gel electrophoresis and autoradiography. Using ATP, the 2-5A synthetase adds one, two or three AMP residues to the 3'-end of the tRNA whereas when dATP is replacing ATP, only one nucleotide unit is added. It is concluded that one of the mechanisms of the interferon-induced antiviral effect may be an inhibition of the translation process caused by an inactivation of tRNA molecules by a 2-5A synthetase catalyzed 2'-adenylation of the 3'-end.  相似文献   

9.
The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activities. However, kinetic studies indicated that the enzyme possessed low biosynthetic activity, suggesting that the reaction was biased towards glutamate production. The optimum temperature for both activities was 60 degrees C, which was lower than the optimal growth temperature of KOD1. Recombinant KOD1 GlnA exhibited different optimum pHs depending on the reaction employed (pH 7.8 for the synthetase reaction and pH 7.2 for the transferase reaction). Of the various nucleoside triphosphates tested, GTP as well as ATP was involved in the synthetase reaction.  相似文献   

10.
The proteomic mapping of enzyme–substrate interactions is challenged by their transient nature. A method to capture interacting protein kinases in complexes with a single substrate of interest would provide a new tool for mapping kinase signaling networks. Here, we describe a nucleotide‐based substrate analog capable of reprogramming the wild‐type phosphoryl‐transfer reaction to produce a kinase‐acrylamide‐based thioether crosslink to mutant substrates with a cysteine nucleophile substituted at the native phosphorylation site. A previously reported ATP‐based methacrylate crosslinker (ATP‐MA) was capable of mediating kinase crosslinking to short peptides but not protein substrates. Exploration of structural variants of ATP‐MA to enable crosslinking of protein substrates to kinases led to the discovery that an ADP‐based methacrylate (ADP‐MA) crosslinker was superior to the ATP scaffold at crosslinking in vitro. The improved efficiency of ADP‐MA over ATP‐MA is due to reduced inhibition of the second step of the kinase–substrate crosslinking reaction by the product of the first step of the reaction. The new probe, ADP‐MA, demonstrated enhanced in vitro crosslinking between the Src tyrosine kinase and its substrate Cortactin in a phosphorylation site‐specific manner. The kinase–substrate crosslinking reaction can be carried out in a complex mammalian cell lysate setting, although the low abundance of endogenous kinases remains a significant challenge for efficient capture.  相似文献   

11.
Purified vaccinia virus treated with Triton X-100 catalyzes the incorporation of ATP into an acid-insoluble product. The enzymatic activity responsible for the ATP polymerization is demonstrated to be different from vaccinia RNA polymerase in its preferential use of ATP as substrate and on the basis of heat stability, pH optima, and metal ion requirement. The ATP polymerization reaction is stimulated 10-fold by the addition of rA(pA)(5.) In accordance with our earlier terminology, we call this Mn(2+)-dependent enzyme terminal riboadenylate transferase to distinguish it from Mg(2+)-dependent poly A polymerase.  相似文献   

12.
5-Oxo-L-prolinase catalyzes the virtually complete hydrolysis of 5-oxo-L-proline (L-pyroglutamate) to L-glutamate. The thermodynamic driving force for this endergonic amide hydrolysis is supplied by the coupled stoichiometric hydrolysis of ATP to ADP and Pi. We report here that the efficiency of the coupling between nucleotide and amide hydrolysis is dependent on the nucleotide base. Thus, with both ATP and dATP there is one to one stoichiometry between nucleotide cleavage and 5-oxoproline hydrolysis. With ITP, GTP, or UTP, however, the hydrolysis of NTP exceeds amide hydrolysis by 6 to 50-fold. In the absence of 5- oxoproline, the enzyme catalyzes a slow ATPase reaction, but it catalyzes very rapid ITPase, GTPase and UTPase reactions. These NTPase reactions, which under some conditions are faster than the ATP-mediated overall coupled reaction, are inhibited by 5-oxoproline and by analogs of 5-oxoproline that bind to the enzyme.  相似文献   

13.
We report that Haemophilus influenzae encodes a 268 amino acid ATP-dependent DNA ligase. The specificity of Haemophilus DNA ligase was investigated using recombinant protein produced in Escherichia coli. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km = 0.2 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. Haemophilus ligase reacted with ATP in the absence of DNA substrate to form a covalent ligase-adenylate intermediate. This nucleotidyl transferase reaction required a divalent cation and was specific for ATP. The Haemophilus enzyme is the first example of an ATP-dependent DNA ligase encoded by a eubacterial genome. It is also the smallest member of the covalent nucleotidyl transferase superfamily, which includes the bacteriophage and eukaryotic ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes.  相似文献   

14.
Nucleotide Phosphohydrolase in Purified Vaccinia Virus   总被引:20,自引:12,他引:8       下载免费PDF全文
Purified infectious vaccinia virus has been shown to contain an enzyme or enzymes that remove the terminal phosphate group from adenosine triphosphate (ATP), guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). The K(m) for ATP of this enzyme is 5.5 x 10(-4)m, and the relative rates of the reaction with ATP, GTP, UTP, and CTP are 1.00, 0.34, 0.15, and 0.29, respectively. The virus enzyme does not react with any of the diphosphates. The rate of the reaction is proportional to the amount of virus added and is linear for 130 min. The virus nucleotide phosphohydrolase activity is greatly stimulated by Mg(++) and very slightly stimulated by Ca(++). The small residual activity observed in the absence of divalent cations is completely inhibited by ethylenediaminetetraacetic acid. Neither Na(+) nor K(+) ions, nor any mixture of these, was found to stimulate the reaction significantly, and ouabain, at 10(-4)m, inhibited the reaction by only 27%. The response of the vaccinia enzyme to mono- and divalent cations and to ouabain indicates that the vaccinia enzyme has different properties from those associated with microsomes and mitochondria.  相似文献   

15.
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the transfer of the intact enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 3'-hydroxyl group of UDP-N-acetylglucosamine (UDPNAG). This reaction constitutes the first committed step in the biosynthesis of the bacterial cell wall component peptidoglycan (murein). The transfer reaction involves the nucleophilic attack of the 3'-hydroxyl group of UDPNAG at the C-2 of PEP. The three-dimensional structure of MurA complexed with UDPNAG revealed an aspartate residue (D305 in the En. cloacae sequence) close to the 3'-hydroxyl group of UDPNAG, suggesting that it may act as an acid-base catalyst in the active center of the enzyme. In addition to aspartate 305, asparagine 23 also interacts with the 3'-hydroxyl group; however, its role in catalysis or binding of the UDPNAG substrate is unclear. To gain information on the role of these two amino acids in the MurA-catalyzed reaction we have exchanged D305 for alanine, cysteine, histidine, and glutamate, and N23 for alanine and serine using site-directed mutagenesis. While the D305 alanine, cysteine, and histidine mutant proteins do not have detectable enzymatic activity, the D305E mutant protein exhibits a low residual activity (ca. 0.1% of the wild-type enzyme). Unlike with wild-type MurA, no exothermic signal was obtained when the D305A and -E mutant proteins were titrated with UDPNAG, demonstrating that the affinity of the sugar nucleotide substrate is reduced as a result of the amino acid exchange. The reduced affinity to UDPNAG leads to a lower propensity of C115 to form either the O-phosphothioketal with PEP or the thioether with the antibiotic fosfomycin. These findings emphasize the dual role of D305 as a general base and an essential binding partner to UDPNAG in the active site of MurA. Similarly, the two N23 mutant proteins showed a much lower catalytic activity although binding of UDPNAG was not as much affected as in the case of the D305 mutant proteins. This result indicates that this amino acid residue is mainly involved in stabilization of transition states.  相似文献   

16.
Hoenke S  Schmid M  Dimroth P 《Biochemistry》2000,39(43):13233-13240
Malonate decarboxylase from Klebsiella pneumoniae contains an acyl carrier protein (MdcC) to which a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group is attached via phosphodiester linkage to serine 25. We have shown in the preceding paper in this issue that the formation of this phosphodiester bond is catalyzed by a phosphoribosyl-dephospho-coenzyme A transferase MdcG with the substrate 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA that is synthesized from ATP and dephospho-coenzyme A by the triphosphoribosyl transferase MdcB. The reaction catalyzed by MdcG is related to nucleotidyltransfer reactions, and the enzyme indeed catalyzes unphysiological nucleotidyltransfer, e.g., adenylyltransfer from ATP to apo acyl carrier protein (ACP). These unspecific side reactions are favored at high Mg(2+) concentrations. A sequence motif including D134 and D136 of MdcG is a signature of all nucleotidyltransferases. It is known from the well-characterized mammalian DNA polymerase beta that this motif is at the active site of the enzyme. Site-directed mutagenesis of D134 and/or D136 of MdcG to alanine abolished the transfer of the prosthetic group to apo ACP, but the binding of triphosphoribosyl-dephospho-CoA to MdcG was not affected. Evidence is presented that similar to MdcG, MadK encoded by the malonate decarboxylase operon of Malonomonas rubra and CitX from the operon encoding citrate lyase in Escherichia coli are phosphoribosyl-dephospho-CoA transferases catalyzing the attachment of the phosphoribosyl-dephospho-CoA prosthetic group to their specific apo ACPs.  相似文献   

17.
Novobiocic acid synthetase, a key enzyme in the biosynthesis of the antibiotic novobiocin, was cloned from the novobiocin producer Streptomyces spheroides NCIMB 11891. The enzyme is encoded by the gene novL, which codes for a protein of 527 amino acids with a calculated mass of 56,885 Da. The protein was overexpressed as a His(6) fusion protein in Escherichia coli and purified to apparent homogeneity by affinity chromatography and gel chromatography. The purified enzyme catalyzed the formation of an amide bond between 3-dimethylallyl-4-hydroxybenzoic acid (ring A of novobiocin) and 3-amino-4,7-dihydroxy-8-methyl coumarin (ring B of novobiocin) in an ATP-dependent reaction. NovL shows homology to the superfamily of adenylate-forming enzymes, and indeed the formation of an acyl adenylate from ring A and ATP was demonstrated by an ATP-PP(i) exchange assay. The purified enzyme exhibited both activation and transferase activity, i.e. it catalyzed both the activation of ring A as acyl adenylate and the subsequent transfer of the acyl group to the amino group of ring B. It is active as a monomer as determined by gel filtration chromatography. The reaction was specific for ATP as nucleotide triphosphate and dependent on the presence of Mg(2+) or Mn(2+). Apparent K(m) values for ring A and ring B were determined as 19 and 131 micrometer respectively. Of several analogues of ring A, only 3-geranyl-4-hydroxybenzoate and to a lesser extent 3-methyl-4-aminobenzoate were accepted as substrates.  相似文献   

18.
CobU is a bifunctional enzyme involved in adenosylcobalamin (coenzyme B(12)) biosynthesis in Salmonella typhimurium LT2. In this bacterium, CobU is the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase needed to convert cobinamide to adenosylcobinamide-GDP during the late steps of adenosylcobalamin biosynthesis. The guanylyltransferase reaction has been proposed to proceed via a covalently modified CobU-GMP intermediate. Here we show that CobU requires a nucleoside upper ligand on cobinamide for substrate recognition, with the nucleoside base, but not the 2'-OH group of the ribose, being important for this recognition. During the kinase reaction, both the nucleotide base and the 2'-OH group of the ribose are important for gamma-phosphate donor recognition, and GTP is the only nucleotide competent for the complete nucleotidyltransferase reaction. Analysis of the ATP:adenosylcobinamide kinase reaction shows CobU becomes less active during this reaction due to the formation of a covalent CobU-AMP complex that holds CobU in an altered conformation. Characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase reaction shows the covalent CobU-GMP intermediate is on the reaction pathway for the generation of adenosylcobinamide-GDP. Identification of a modified histidine and analysis of cobU mutants indicate that histidine 46 is the site of guanylylation.  相似文献   

19.
Besides its major role in protein synthesis, wheat germ arginyl-tRNAArg can serve as an amino acid donor in an enzymatic reaction to bovine serum albumin catalysed by the enzyme arginyl-tRNAArg: protein transferase. The nucleotide sequence of the tRNAArg involved in this reaction was determined to be: pG-A-C-U-C-C-G-U-m1G-m2G-C-C-C-A-A-D-Gm-G-A-X-A-A-G-G-C-m2(2) G-C-U-G-G-U-Cm-U-I-C-G-m2A-A-A-C-C-A-G-A-G-A-D-U-m5C-U-G-G-G-T-psi -C-G-m1 A-U-C-C-C-C-A-G-C-G-G-A-G-U-C-G-C-C-AOH. We suggest that the decapentanucleotide 5'-G-U-Pu-m2G-C-N-C-A-A-D-Gm-G-A-X-A-3', localized in the D-region, interacts specifically with the protein transferase.  相似文献   

20.
Endogenous nuclease digestion of thymus nuclei from 3–4 week old rats followed by a step wise extraction with low salt, 0.5 M salt and 1 M salt removed approximately 70–85% of total nuclear terminal deoxynucleotidyl transferase (TdT) whereas approximately 15–30% of the enzyme remained tightly bound to the residual nuclear matrix. The cytoplasmic TdT as well as the bulk of nuclear TdT extracted in low salt and 0.5 M salt was found to be strongly inhibited at low concentration of ATP whereas matrix bound TdT and a significant portion of the enzyme in 1 M salt extract was completely insensitive to this nucleotide. The ATP resistant enzyme in the 1 M salt extract was unstable and slowly converted to ATP sensitive form upon prolonged preincubation on ice whereas under similar conditions it remained unaffected in the matrix bound form. These observations lead us to suggest that ATP resistant matrix bound TdT being capable of discriminating unnatural rNTPs against the natural dNTP substrates, may be the functionally organized form of the enzyme and that free TdT having lost the capability to distinguish between dNTP and rNTP may be the nonfunctional form of the enzyme in the thymus gland.Abbreviations dNTP deoxyribonucleoside triphosphate - DTT dithiothreitol - Ig immunoglobulin - PMSF phenylmethylsulfonylfluoride - rNTP ribonucleoside triphosphate - TCR T cell receptor - TdT terminal deoxynucleotidyl transferase - VDJ variable, diversity and joining segments of Ig or TCR genes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号