首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo studies have shown that, in the absence of homoserine-O-transacetylase activity (locus met(2)), the C(4)-carbon moiety of ethionine is utilized (provided the ethionine resistance gene eth-2r is present) by methionine auxotrophs, except for met(8) mutants (homocysteine synthetase-deficient). Concomitant utilization of sulfur and methyl group from methylmercaptan or S-methylcysteine has been demonstrated. In the absence of added methylated intermediates, the methyl group of methionine formed from ethionine is derived from serine. In vitro studies with crude extracts of Saccharomyces cerevisiae have demonstrated that this synthesis of methionine occurs by the following reactions: CH(3)-SH + ethionine right harpoon over left harpoon methionine + C(2)H(5)SH and S-methylcysteine + ethionine right harpoon over left harpoon methionine + S-ethylcysteine. In the forward direction, the second product of the second reaction was shown to be S-ethylcysteine; this reaction has also been found reversible, leading to ethionine formation. Genetic and kinetic data have shown that homocysteine synthetase catalyzes these two reactions, at 0.3% of the rate it catalyzes direct homocysteine synthesis: O-Ac-homoserine + Na(2)S --> homocysteine + acetate. The three reactions are lost together in a met(8) mutant and are recovered to the same extent in spontaneous prototrophic revertants from this strain. Methionine-mediated regulation of enzyme synthesis affects the three activities and is modified to the same extent by the presence of the recessive allele (eth-2r) of the regulatory gene eth-2. Affinities of the enzyme for substrates of both types of reactions are of the same order of magnitude. Moreover, ethionine, the substrate of the second reaction, inhibits the third reaction, whereas O-acetyl-homoserine, the substrate of the third reaction, inhibits the second reaction. An enzymatic cleavage of S-methylcysteine, leading to methylmercaptan production, has been shown to occur in crude yeast extracts. It is concluded that the enzyme homocysteine synthetase participates in the two alternate pathways leading to methionine biosynthesis in S. cerevisiae, one involving O-acetyl-homoserine and H(2)S, the other involving the 4-carbon chain of ethionine and a mercaptyl donor. Participation of the two types of reactions catalyzed by homocysteine synthetase, in in vivo methionine synthesis, has been shown to occur in a met(2) partial revertant.  相似文献   

2.
In Aspergillus nidulans homocysteine can be metabolized both to cysteine and methionine. Mutants impaired in the main pathway of cysteine synthesis or in the sulphate assimilation pathway show a low pool of glutathione and elevated levels of homocysteine synthase and of the homocysteine-to-cysteine pathway enzymes. On the other hand, the level of methionine synthase and other enzymes of folate metabolism is depressed in these mutants. This anticoordinated regulation provides a mechanism controlling the partition of homocysteine between the two diverging pathways. Homocysteine synthase was found derepressed, along with folate enzymes, in a strain carrying a mutation which suppresses mutations in metA, metB and metG genes. These results indicate that homocysteine synthase can be regarded as the enzyme of an alternative pathway of methionine synthesis and strongly suggest that the regulatory mechanisms governing sulphur-containing amino acid and folate metabolisms are interrelated.  相似文献   

3.
The increased toxicity of sulphonamides for Escherichia coli in the presence of low concentrations (50-100 microM) of purines or purine nucleosides has been confirmed and investigated further. The potentiating effect of a purine was dependent upon the activity of the appropriate phosphoribosyl transferase: a gpt mutant strain was not potentiated by guanine but remained fully sensitive to the addition of adenine. Mutants resistant to the potentiating effect of all purines have been isolated and partially characterized. The site of these mutations has been located in the region between oriC and asnA at minute 83 on the E. coli chromosome map. It is suggested that this locus be temporarily designated psp (potentiation of sulphonamides by purines) because these mutants have unaltered sensitivities to sulphonamides acting alone. Mutations in PurA, purR and folB did not affect the potentiation of sulphonamides by purines. Hypoxanthine-insensitive strains harbouring lambda asn20 were as sensitive as the wild-type to the potentiating effect. This result suggests that these lysogens are heterozygous for psp and that the wild-type allele is dominant. It is probable that psp is a regulatory gene, affecting some rate-limiting step in the biosynthesis of methionine.  相似文献   

4.
1. Regulation of four enzymes involved in cysteine and homocysteine synthesis, i.e. cysteine synthase (EC 4.2.99.8), homocysteine synthase (EC 4.1.99.10), cystathionine beta-synthase (EC 2.1.22) and gamma-cystathionase (EC 4.4.1.1) was studied in the wild type and sulphur regulatory mutants of Neurospora crassa. 2. Homocysteine synthase and cystathionine beta-synthase were found to be regulatory enzymes but only the former is under control of the cys-3 - scon system regulating several enzymes of sulphur metabolism, including gamma-cystathionase. 3. The results obtained with the mutants strongly suggest that homocysteine synthase plays a physiological role as an enzyme of the alternative pathway of methionine synthesis. Cysteine synthase activity was similar in all strains examined irrespective of growth conditions. 4. The sconc strain with derepressed enzymes of sulphur metabolism showed an increased pool of sulphur amino acids, except for methionine. Particularly characteristic for this pool is a high content of hypotaurine, a product of cysteine catabolism.  相似文献   

5.
The effects of mutations occurring at three independent loci, eth2, eth3, and eth10, were studied on the basis of several criteria: level of resistance towards two methionine analogues (ethionine and selenomethionine), pool sizes of free methionine and S-adenosyl methionine (SAM) under different growth conditions, and susceptibility towards methionine-mediated repression and SAM-mediated repression of some enzymes involved in methionine biosynthesis (met group I enzymes). It was shown that: (i) the level of resistance towards both methionine analogues roughly correlates with the amount of methionine accumulated in the pool; (ii) the repressibility of met group I enzymes by exogenous methionine is either abolished or greatly lowered, depending upon the mutation studied; (iii) the repressibility of the same enzymes by exogenous SAM remains, in at least three mutants studied, close to that observed in a wild-type strain; (iv) the accumulation of SAM does not occur in the most extreme mutants either from endogenously overproduced or from exogenously supplied methionine: (v) the two methionine-activating enzymes, methionyl-transfer ribonucleic acid (tRNA) synthetase and methionine adenosyl transferase, do not seem modified in any of the mutants presented here; and (vi) the amount of tRNAmet and its level of charging are alike in all strains. Thus, the three recessive mutations presented here affect methionine-mediated repression, both at the level of overall methionine biosynthesis which results in its accumulation in the pool, and at the level of the synthesis of met group I enzymes. The implications of these findings are discussed.  相似文献   

6.
One hundred and thirty-three spontaneous and induced mutants of the met15 locus in Saccharomyces cerevisiae were characterized with respect to temperature sensitivity, osmotic remediability, interallelic complementation, and suppressibility by amber and ochre suppressors. Forty mutants are osmotic remedial; 17 of these, and no others, are also temperature-sensitive. Seven of 133 mutations are suppressible by an amber suppressor and 11 are suppressible by an ochre suppressor. Seventy percent of the mutants exhibited interallelic complementation, suggesting that the functional gene product of the met15 gene is a multimeric protein. Relative map positions of 30 met15 were estimated from the frequencies of X-ray-induced mitotic reversion of various heteroallelic diploids. All complementing nonsense mutations are located near one end of the gene in contrast to other nonsense mutations which span most of the gene, thus relating the direction of translation of the mRNA with respect to the fine-structure map. Recombination studies indicated that two of 30 mutants contained deletions of the entire met15 locus.—It was established that a variety of mutational types, including missense, nonsense, and deletions, are recovered with this unique system in which both forward and reverse mutations can be selected on the basis of methyl mercury resistance and methionine requirement of the met15 mutants.  相似文献   

7.
Control of methionine biosynthesis in Escherichia coli K12 was reinvestigated by using methionine-analogue-resistant mutants. Norleucine (NL) and alpha-methylmethionine (MM) were found to inhibit methionine biosynthesis directly whereas ethionine (Et) competitively inhibited methionine utilization. Adenosylation of Et to generate S-adenosylethionine (AdoEt) by cell-free enzyme from E. coli K12 was demonstrated. Tolerance of increasing concentrations of NL by E. coli K12 mutants is expressed serially as phenotypes NLR, NLREtR, NLRMMR and finally NLREtRMMR. All spontaneous NLR mutants had a metK mutation, whereas NTG-induced mutants had mutations in both the metK and metJ genes. The kinetics of methionine adenosylation by the E. coli K12 cell-free enzyme were found to be similar to those reported for the yeast enzyme, showing the typical lag phase at low methionine concentration and disappearance of this phase when AdoMet was included in the incubation mixture. NL extended the lag phase, and lowered the rate of subsequent methionine adenosylation, but did not affect the shortening of the lag phase of adenosylation by AdoMet.  相似文献   

8.
9.
Nineteen mutants of Salmonella typhimurium responding to either cysteine or methionine (cym) have been identified amongst cysteine (cys) and methionine (met) auxotrophs. Their growth responses to known intermediates in the related pathways of cysteine and methionine biosynthesis and complementation patterns in abortive transduction tests divided the mutants into six groups. Results of conjugation, cotransduction and deletion mapping experiments substantiated these groups, each of which carried a lesion within known cys genes. Enzyme assays on cym mutants from five of the six groups confirmed their cys gene deficiencies. Growth response and enzyme assay data were not consistent with mutants being leaky cys mutants (spared by methionine). None of eight cym mutants tested were able to convert [35S]methionine into [35S]cysteine. Selenate specifically inhibits the early enzymes of cysteine synthesis. In cym mutants this inhibition was relieved by cysteine but not by methionine, indicating that cym mutants require active cys enzymes for growth on methionine. There was evidence that methionine stimulated in vivo activity of cys enzymes in a cym mutant. Resistance to inhibition by 1,2,4-triazole results in reduced levels of the O-acetyl serine sulphydrylase. In cym mutants triazole resistance gave unstable suppression of the cym phenotype. Cym mutants may result from mutation in regulatory regions common to each of the cys genes, with the precise role of methionine as yet unknown.  相似文献   

10.
Approximately one-half of the mutants of Saccharomyces cerevisiae that are selected as resistant to methyl mercury are also found to require methionine. Eighty-four percent of these met mutations occur at the met15 locus, and the remaining 16% occur at the met2 locus. Surprisingly, the methionine-requiring mutants are recovered at a much higher frequency on methionineless media than on media supplemented with methionine. Growth patterns of the met mutants on media having a continuous concentration gradient of methionine and mercury compounds indicate that, at a critical concentration of the mercury compounds, the methionine requirement of certain met mutants is partially or completely alleviated. This was found for met2, met15, and to a lesser extent for met6, but not for any other methionine mutants. This loss of methionine requirement is produced with methyl mercury, phenyl mercury, and mercuric chloride although met2 and met15 strains can be shown to be resistant only to methyl mercury. Other methionine auxotrophs are not resistant to any of the three mercury compounds. The met2 and met15 mutants, but not the other methionine auxotrophs, develop a sheen of an unidentified product when grown on media with mercuric chloride but not with methyl mercury or phenyl mercury. It is suggested that met2 and met15 mutants produce a simple diffusible substance, which detoxifies methyl mercury, which reacts with mercuric chloride to produce a sheen, and which is the cause of the methionine requirement.  相似文献   

11.
In the S- methylmethionine cycle of plants, homocysteine methyltransferase (HMT) catalyzes the formation of two molecules of methionine from homocysteine and S- methylmethionine, and methionine methyltransferase (MMT) catalyzes the formation of methionine from S- methylmethionine using S- adenosylmethionine as a methyl group donor. Somewhat surprisingly, two independently isolated knockdown mutations of HMT2 (At3g63250), one of three Arabidopsis thaliana genes encoding homocysteine methyltransferase, increased free methionine abundance in seeds. Crosses and flower stalk grafting experiments demonstrate that the maternal genotype at the top of the flower stalk determines the seed S- methylmethionine and methionine phenotype of hmt2 mutants. Uptake, transport and inter-conversion of [13C] S- methylmethionine and [13C]methionine in hmt2 , mmt and wild-type plants show that S- methylmethionine is a non-essential intermediate in the movement of methionine from vegetative tissue to the seeds. Together, these results support a model whereby elevated S- methylmethionine in hmt2 vegetative tissue is transported to seeds and either directly or indirectly results in the biosynthesis of additional methionine. Manipulation of the S- methylmethionine cycle may provide a new approach for improving the nutritional value of major grain crops such as rice, as methionine is a limiting essential amino acid for mammalian diets.  相似文献   

12.
A new strategy for molecular cloning in the cyanobacterium Anacystis nidulans R-2 is described. This strategy involved the use of a transposon and was developed for the cloning of a gene encoding methionine biosynthesis. A met::Tn901 mutant was isolated. Chromosomal DNA fragments were cloned in the Escherichia coli plasmid vector pACYC184. A recombinant plasmid carrying the inactivated met::Tn901 gene was selected after transformation to E. coli. The cloned met::Tn901 DNA fragment was used as a probe to select the corresponding A. nidulans R-2 wild-type met gene from a gene library prepared in E. coli, using the newly constructed shuttle cosmid vector pPUC29. When transformed into A. nidulans Met- mutants, this cloned gene allowed the mutants to grow prototrophically.  相似文献   

13.
The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim). The most commonly detected genes were erm(B), bla TEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy.  相似文献   

14.
Many plant mutants develop spontaneous lesions that resemble disease symptoms in the absence of pathogen attack. In several pathosystems, lesion mimic mutations have been shown to be involved in programmed cell death, which in some instances leads to enhanced disease resistance to multiple pathogens. We investigated the relationship between spontaneous cell death and disease resistance in rice with nine mutants with a range of lesion mimic phenotypes. All nine mutations are controlled by recessive genes and some of these mutants have stunted growth and other abnormal characteristics. The lesion mimics that appeared on the leaves of these mutants were caused by cell death as measured by trypan blue staining. Activation of six defense-related genes was observed in most of the mutants when the mimic lesions developed. Four mutants exhibited significant enhanced resistance to rice blast. One of the mutants, spl11, confers non-race-specific resistance not only to blast but also to bacterial blight. The level of resistance in the spl11 mutant to the two pathogens correlates with the defense-related gene expression and lesion development on the leaves. The results suggest that some lesion mimic mutations in rice may be involved in disease resistance, and cloning of these genes may provide a clue to developing broad-spectrum resistance to diverse pathogens.  相似文献   

15.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate in the synthesis of methionine from homocysteine. We have cloned and characterized two Aspergillus nidulans genes encoding MTHFRs: metA and metF. Mutations in either gene result in methionine requirement; the metA-encoded enzyme is responsible for only 10-15% of total MTHFR activity. These two enzymes belong to different classes of MTHFRs. Mutations in metA but not in the metF gene are suppressed by mutations resulting in enhancement of homocysteine synthesis. The expression of both genes is up-regulated by homocysteine.  相似文献   

16.
In yeast the resistance to kresoxim-methyl and azoxystrobin, like the resistance to strobilurin A (mucidin) is under the control of both mitochondrial cob gene and the PDR network of nuclear genes involved in multidrug resistance. The mucidin-resistant mucl (G137R) and muc2 (L275S) mutants of Saccharomyces cerevisiae containing point mutations in mtDNA were found to be cross-resistant to kresoxim-methyl and azoxystrobin. Cross-resistance to all three strobilurin fungicides was also observed in yeast transformants containing gain-of-function mutations in the nuclear PDR3 gene. On the other hand, nuclear mutants containing disrupted chromosomal copies of the PDR1 and PDR3 genes or the PDR5 gene alone were hypersensitive to kresoxim-methyl, azoxystrobin and strobilurin A. The frequencies of spontaneous mutants selected for resistance either to kresoxim-methyl, azoxystrobin or strobilurin A were similar and resulted from mutations both in mitochondrial and nuclear genes. The results indicate that resistance to strobilurin fungicides, differing in chemical structure and specific activity, can be caused by the same molecular mechanism involving changes in the structure of apocytochrome b and/or increased efflux of strobilurins from fungal cells.  相似文献   

17.
Summary Certain metH mutants (which lack the B12-dependent homocysteine transmethylase) give rise to revertants resistant to the methionine analogue, ethionine. The revertants retain the original metH mutation and its suppression is due to two mutations, supI and supII. The supI mutation, which confers ethionine resistance, appears to be a mutation in the methionine regulatory gene, metJ, but the location and nature of supII have not been determined. It is possible that suppression results from a direct association between the metH and metJ gene products or by the introduction of an alternative pathway of homocysteine methylation.  相似文献   

18.
19.
20.
Several regulators of methionine biosynthesis have been reported in Escherichia coli, which might represent barriers to the production of excess l-methionine (Met). In order to examine the effects of these factors on Met biosynthesis and metabolism, deletion mutations of the methionine repressor (metJ) and threonine biosynthetic (thrBC) genes were introduced into the W3110 wild-type strain of E. coli. Mutations of the metK gene encoding S-adenosylmethionine synthetase, which is involved in Met metabolism, were detected in 12 norleucine-resistant mutants. Three of the mutations in the metK structural gene were then introduced into metJ and thrBC double-mutant strains; one of the resultant strains was found to accumulate 0.13 g/liter Met. Mutations of the metA gene encoding homoserine succinyltransferase were detected in alpha-methylmethionine-resistant mutants, and these mutations were found to encode feedback-resistant enzymes in a 14C-labeled homoserine assay. Three metA mutations were introduced, using expression plasmids, into an E. coli strain that was shown to accumulate 0.24 g/liter Met. Combining mutations that affect the deregulation of Met biosynthesis and metabolism is therefore an effective approach for the production of Met-excreting strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号