共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Houben R Becker JC Kappel A Terheyden P Bröcker EB Goetz R Rapp UR 《Journal of carcinogenesis》2004,3(1):6
BACKGROUND: Genes of the Raf family encode kinases that are regulated by Ras and mediate cellular responses to growth signals. Recently, it was shown that activating mutations of BRaf are found with high frequency in human melanomas. The Ras family member most often mutated in melanoma is NRas. METHODS: The constitutive activation of the Ras/Raf signaling pathway suggests an impact on the clinical course of the tumor. To address this notion, we analyzed tumor DNA from 114 primary cutaneous melanomas and of 86 metastatic lesions obtained from 174 patients for mutations in BRaf (exons 15 and 11) and NRas (exons 1 and 2) by direct sequencing of PCR products and correlated these results with the clinical course. RESULTS: In 57.5% of the tumors either BRaf or NRas were mutated with a higher incidence in metastatic (66.3%) than in primary lesions (50.9%). Although the majority of BRaf mutations affected codon 599, almost 15% of mutations at this position were different from the well-described exchange from valine to glutamic acid. These mutations (V599R and V599K) also displayed increased kinase and transforming activity. Surprisingly, the additional BRaf variants D593V, G465R and G465E showed a complete loss of activity in the in vitro kinase assay; however, cells overexpressing these mutants displayed increased Erk phosphorylation. The correlation of mutational status and clinical course revealed that the presence of BRaf/NRas mutations in primary tumors did not negatively impact progression free or overall survival. In contrast, however, for metastatic lesions the presence of BRAF/NRAS mutations was associated with a significantly poorer prognosis, i.e. a shortened survival. CONCLUSION: We demonstrate a high - albeit lower than initially anticipated - frequency of activating BRaf mutations in melanoma in the largest series of directly analyzed tumors reported to date. Notably, the clinical course of patients harboring activating BRaf mutations in metastatic melanoma was significantly affected by the presence of a constitutive BRaf activation in these. 相似文献
3.
Flavonoids are polyphenolic compounds found throughout the plant kingdom. They occur in every organ but are usually concentrated in leaves and flowers. During the last two decades, in vitro and in vivo studies demonstrated that flavonoids have inhibitory effects on human diseases through targeting of multiple cellular signaling components. Wnt/β-catenin signaling regulates proliferation, differentiation and fate specification in developmental stages and controls tissue homeostasis in adult life. For these reasons, this pathway has received great attention in the last years as potential pathway involved in distinct Human pathologies. In this review we discuss the emerging potential mechanisms for flavonoids on Wnt/β-catenin signaling in cancer and possible investigation strategies to understand flavonoids mode of action on this signaling pathway. 相似文献
4.
5.
Regulation of beta-catenin signaling in the Wnt pathway 总被引:41,自引:0,他引:41
Kikuchi A 《Biochemical and biophysical research communications》2000,268(2):243-248
beta-Catenin not only regulates cell to cell adhesion as a protein interacting with cadherin, but also functions as a component of the Wnt signaling pathway. The Wnt signaling pathway is conserved in various organisms from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. Wnt stabilizes cytoplasmic beta-catenin and then beta-catenin is translocated into the nucleus where it stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. The amounts and functions of beta-catenin are regulated in both the cytoplasm and nucleus. Its molecular mechanisms are becoming increasingly well understood. 相似文献
6.
Korswagen HC 《Developmental cell》2006,10(6):687-688
Although it is well established that reactive oxygen species (ROS) can function as intracellular messengers, the mechanism of ROS dependent signaling is largely unknown (Rhee et al.,2005). In a recent paper in Nature Cell Biology, Funato et al. (2006) demonstrate that ROS can modulate signaling by the Wnt/beta-catenin pathway. This work provides interesting new insight into cross-talk between redox and Wnt/beta-catenin signaling in normal physiology and cancer. 相似文献
7.
8.
9.
10.
Wnt/beta-catenin signaling: turning the switch 总被引:1,自引:0,他引:1
Cadigan KM 《Developmental cell》2008,14(3):322-323
11.
12.
Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling 总被引:2,自引:0,他引:2
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway. 相似文献
13.
Arnold SJ Stappert J Bauer A Kispert A Herrmann BG Kemler R 《Mechanisms of development》2000,91(1-2):249-258
14.
15.
Xiaofen Li Wangxiong Hu Jiaojiao Zhou Yanqin Huang Jiaping Peng Ying Yuan Jiekai Yu Shu Zheng 《Cell communication and signaling : CCS》2017,15(1):38
Background
Chloride channel accessory 1 (CLCA1) belongs to the calcium-sensitive chloride conductance protein family, which is mainly expressed in the colon, small intestine and appendix. This study was conducted to investigate the functions and mechanisms of CLCA1 in colorectal cancer (CRC).Methods
The CLCA1 protein expression level in CRC patients was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and western blotting analysis. Using CRISPR/Cas9 technology, CLCA1-upregulated (CLCA1-ACT) and CLCA1-knockout cells (CLCA1-KO), as well as their respective negative controls (CLCA1-ACT-NC and CLCA1-KO-NC), were constructed from the SW620 cell line. Cell growth and metastatic ability were assessed both in vitro and in vivo. The association of CLCA1 with epithelial-mesenchymal transition (EMT) and other signaling pathways was determined by western blotting assays.Results
The expression level of CLCA1 in CRC tissues was significantly decreased compared with that in adjacent normal tissue (P< 0.05). Meanwhile, the serum concentration of CLCA1 in CRC patients was also significantly lower when compared with that of healthy controls (1.48?±?1.06 ng/mL vs 1.06?±?0.73 ng/mL, P?=?0.0018). In addition, CLCA1 serum concentration and mRNA expression level in CRC tissues were inversely correlated with CRC metastasis and tumor stage. Upregulated CLCA1 suppressed CRC growth and metastasis in vitro and in vivo, whereas inhibition of CLCA1 led to the opposite results. Increased expression levels of CLCA1 could repress Wnt signaling and the EMT process in CRC cells.Conclusions
Our findings suggest that increased expression levels of CLCA1 can suppress CRC aggressiveness. CLCA1 functions as a tumor suppressor possibly via inhibition of the Wnt/beta-catenin signaling pathway and the EMT process.16.
The vertebrate brain is an immensely complex structure, which exhibits numerous morphological and functional asymmetries. The best described brain asymmetries are found in the diencephalic epithalamus, where the habenulae and the dorso-laterally adjacent pineal complex are lateralized in many species. Research in the past decade has shed light on the establishment of the laterality of these structures as well as their asymmetry per se. In particular work in zebrafish (Danio rerio) has substantially contributed to our understanding, which genetic pathways are involved in these processes. The Wnt/beta-catenin pathway has turned out to play a pivotal role in the regulation of brain laterality and asymmetry and acts reiteratively during embryonic development. 相似文献
17.
18.
19.
20.
Yousefi Fatemeh Najafi Hadi Behmanesh Mehrdad Soltani Bahram M. 《Molecular biology reports》2022,49(5):3377-3387
Molecular Biology Reports - Aberrant activation of the Wnt signaling pathway is observed in most colorectal cancers (CRC). OCC-1D is a splice variant of OCC-1 gene which is considered as a long... 相似文献