首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have synthesized two photoreactive derivatives of somatostatin, namely [125I-Tyr11,azidonitrobenzoyl (ANB)-Lys4]somatostatin and [125I-Tyr11,ANB-Lys9]somatostatin, and used them to characterize somatostatin receptors biochemically in several cell types. Saturation binding experiments carried out in the dark demonstrated that [125I-Tyr11,ANB-Lys4]somatostatin bound with high affinity (KD = 126 +/- 39 pM) to a single class of binding sites in GH4C1 pituitary cell membranes. The affinity of this analog was similar to that of the unsubstituted peptide [125I-Tyr11]somatostatin (207 +/- 3 pM). In contrast, specific binding was not observed with [125I-Tyr11,ANB-Lys9]somatostatin. The binding of both [125I-Tyr11,ANB-Lys4]somatostatin and [125I-Tyr11]somatostatin was potently inhibited by somatostatin (EC50 = 300 pM) whereas at 100 nM unrelated peptides had no effect. Furthermore, both pertussis toxin treatment and guanyl-5'yl imidophosphate (Gpp(NH)p) markedly reduced [125I-Tyr11,ANB-Lys4]somatostatin binding. Thus, [125I-Tyr11,ANB-Lys4]somatostatin binds to G-protein coupled somatostatin receptors with high affinity. To characterize these receptors biochemically, GH4C1 cell membranes were irradiated with ultraviolet light following the binding incubation, and the labeled proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. A major band of 85 kDa was specifically labeled with [125I-Tyr11,ANB-Lys4]somatostatin but not with [125I-Tyr11,ANB-Lys9]somatostatin or [125I-Tyr11]somatostatin. The binding affinity of the 85-kDa protein for [125I-Tyr11,ANB-Lys4]somatostatin was very high (Kd = 34 pM). Labeling of this protein was inhibited competitively by somatostatin (EC50 = 140 +/- 80 pM) but not by unrelated peptides. Furthermore, this band was not labeled in pertussis toxin-treated membranes or in untreated membranes incubated with Gpp(NH)p. Finally, [125I-Tyr11,ANB-Lys4]somatostatin specifically labeled bands of 82, 75, and 72 kDa in membranes prepared from mouse pituitary AtT-20 cells, rat pancreatic acinar AR4-2J cells, and HIT hamster islet cells, respectively. Thus, [125I-Tyr11,ANB-Lys4]somatostatin represents the first photolabile somatostatin analog able to bind to receptors with high affinity. Our studies demonstrate that this novel peptide covalently labels specific somatostatin receptors in a variety of target cell types.  相似文献   

2.
Previously the synthesis of novel somatostatin mimetic from 1-deoxynojirimycin (DNJ) led to identification of a compound with affinity for human somatostatin receptor subtypes 4 and 5 (hSSTR4 and hSSTR5). Here we examined the properties of this peptidomimetic in a human umbilical vein endothelial cell (HUVEC) based assays. The peptidomimetic prevented capillary tube formation based on HUVECs. It also inhibited HUVEC proliferation by inducing G1 phase cell cycle arrest and apoptosis. Stress fiber assembly and cell migration in HUVECs was markedly suppressed by the somatostatin receptor ligand.  相似文献   

3.
A membrane receptor and a cytosolic receptor for somatostatin were found in a human undifferentiated pancreatic cancer cell line (MIA PaCa-2). Binding of somatostatin to this membrane receptor activates dephosphorylation of a phosphotyrosyl-membrane protein whose phosphorylation was promoted by epidermal growth factor (EGF). Vanadate, a purported inhibitor of dephosphorylation, interferes with the action of somatostatin. These findings suggest a possible biochemical mechanism by which somatostatin may inhibit the growth of human pancreatic cancers.  相似文献   

4.
Here we characterize the intracellular effectors of the antiproliferative activity of somatostatin in glioma cell lines and post-surgical specimens. The responsiveness to somatostatin correlated with the expression of the phosphotyrosine phosphatase DEP-1/PTPeta, identified in C6 and U87MG cells, in which somatostatin inhibited cell growth. The expression of a dominant negative mutant of DEP-1/PTPeta in C6 cells abolished somatostatin effects, confirming the involvement of this phosphotyrosine phosphatase in such effects. Somatostatin treatment increased the activity of DEP-1/PTPeta and inhibited ERK1/2 activation. Conversely, basic fibroblast growth factor-dependent MEK phosphorylation was not affected, suggesting a direct effect on ERK1/2. In vitro experiments showed that PTPeta was able to interact and dephosphorylate ERK1/2 activated by basic fibroblast growth factor. Furthermore, by transfecting PTPeta in the somatostatin-unresponsive, DEP-1/PTPeta-deficient U373MG cells, the somatostatin-dependent control of cell proliferation was recovered. Finally we evaluated the requirement for DEP-1/PTPeta in somatostatin inhibition of cell proliferation in post-surgical specimens derived from different grade human gliomas. Although all of the glioma analyzed expressed somatostatin receptor mRNA, DEP-1/PTPeta expression was limited to 8 of 22 of the tumors. Culturing seven gliomas, a correlation between the expression of DEP-1/PTPeta and the somatostatin antiproliferative effects was identified. In conclusion we propose that the expression and activation of DEP-1/PTPeta is required for somatostatin inhibition of glioma proliferation.  相似文献   

5.
The aim of this study was the characterization of the intracellular effectors of the antiproliferative activity of somatostatin in PC Cl3 thyroid cells. Somatostatin inhibited PC Cl3 cell proliferation through the activation of a membrane phosphotyrosine phosphatase. Conversely, PC Cl3 cells stably expressing the v-mos oncogene (PC mos) were completely insensitive to the somatostatin antiproliferative effects since somatostatin was unable to stimulate a phosphotyrosine phosphatase activity. In PC mos cells basal phosphotyrosine phosphatase activity was also reduced, suggesting that the expression of a specific phosphotyrosine phosphatase was impaired in these transformed cells. We suggested that this phosphotyrosine phosphatase could be r-PTP eta whose expression was abolished in the PC mos cells. To directly prove the involvement of r-PTP eta in somatostatin's effect, we stably transfected this phosphatase in PC mos cells. This new cell line (PC mos/PTP eta) recovered somatostatin's ability to inhibit cell proliferation, showing dose-dependence and time course similar to those observed in PC Cl3 cells. Conversely, the transfection of a catalytically inactive mutant of r-PTP eta did not restore the antiproliferative effects of somatostatin. PC mos/PTP eta cells showed a high basal phosphotyrosine phosphatase activity which, similarly to PC Cl3 cells, was further increased after somatostatin treatment. The specificity of the role of r-PTP eta in somatostatin receptor signal transduction was demonstrated by measuring its specific activity after somatostatin treatment in an immunocomplex assay. Somatostatin highly increased r-PTP eta activity in PCCl3 and PC mos/PTP eta (+300%, P < 0.01) but not in PCmos cells. Conversely, no differences in somatostatin-stimulated SHP-2 activity, (approximately +50%, P < 0.05), were observed among all the cell lines. The activation of r-PTP eta by somatostatin caused, acting downstream of MAPK kinase, an inhibition of insulin-induced ERK1/2 activation with the subsequent blockade of the phosphorylation, ubiquitination, and proteasome degradation of the cyclin-dependent kinase inhibitor p27(kip1). Ultimately, high levels of p27(kip1) lead to cell proliferation arrest. In conclusion, somatostatin inhibition of PC Cl3 cell proliferation requires the activation of r-PTP eta which, through the inhibition of MAPK activity, causes the stabilization of the cell cycle inhibitor p27(kip1).  相似文献   

6.
The mitogen activated protein (MAP) kinase cascade represents one of the major regulator of cell growth by hormones and growth factors. However, although the activation of this intracellular pathway has been often regarded as mediator of cell proliferation, in many cell types the increase in MAP kinase (also called extra-cellular signal regulated kinase: ERK) activity may result in cell growth arrest, depending on the length or the intensity of the stimulation. In this review we examine recent data concerning the effects of somatostatin on the MAP kinase cascade through one of its major receptor subtype, the somatostatin receptor 1 (SSTR1), stably expressed in CHO-K1 cells. Somatostatin inhibits the proliferative effects of basic FGF (bFGF) in CHO-SSTR1 cell line. However, in these cells, somatostatin robustly activates the MAP kinase and augments bFGF-induced stimulation of ERK. We show that the activation of ERK via SSTR1 is mediated by the betagamma subunit of a pertussis toxin-sensitive G-protein and requires both the small G protein Ras and the serine/threonine kinase Raf-1. Moreover the phosphatidyl inositol-3kinase and the cytosolic tyrosine kinase c-src participate in the signal transduction regulated by SSTRI to activate ERK, as well as it is involved the protein tyrosine phosphatase (PTP) SHP-2. Previous studies have suggested that somatostatin-stimulated PTP activity mediates the growth inhibitory actions of somatostatin, in CHO-SSTR1 cells. Thus, the activation of SHP-2 by SSTR1 may mediate the antiproliferative activity of somatostatin. SHP-2 may. in turn, regulate the activity of kinases upstream of ERK that require tyrosine dephosphorylation to be activated, such as c-src. Finally, the synergism between somatostatin and bFGF in the activation of ERK results in an increased expression of the cyclin-dependent kinase inhibitor p21cip/WAF1 as molecular effector of the antiproliferative activity of somatostatin.  相似文献   

7.
Although peptide hormone receptors commonly exert their actions at the plasma membrane the cellular mechanisms that route the receptor proteins to the cell surface during biosynthesis are not well characterized. Here we report on the identification of a plasma membrane targeting sequence of rat somatostatin receptor subtype 3. While type 3 somatostatin receptors are present almost exclusively at the cell surface, type 1 receptors localize in addition largely in intracellular vesicular compartments. Chimeric receptors were constructed between rat somatostatin receptors 3 and 1. They were tagged by recombinant DNA techniques with a herpes simplex virus glycoprotein D epitope at the carboxyl-termini to facilitate their detection using fluorescence microscopic methods. Following transfection of the constructs in human embryonic kidney and rat insulinoma cells the chimeric receptors were analyzed by indirect immunofluorescence using anti-epitope monoclonal antibody and confocal laser scanning microscopy. The results demonstrate that the amino-terminal domain of somatostatin receptor 3 suffices to guide chimeric receptors to the cell surface. In marked contrast, chimeric receptors that lack this sequence but contain instead the amino-terminus of somatostatin type 1 receptor localize in an intracellular vesicular compartment.  相似文献   

8.
GH4C1 cells are a clonal strain of rat pituitary tumor cells which synthesize and secrete prolactin and growth hormone. Somatostatin, a hypothalamic tetradecapeptide, inhibits the release of growth hormone and, under certain circumstances, also prolactin from normal pituitary cells. We have prepared [125I-Tyr1]somatostatin (approximately 2200 C1/mmol) and have shown that this ligand binds to a limited number of high affinity sites on GH4C1 cells. Half-maximal binding of somatostatin occurred at a concentration of 6 x 10(-10) M. A maximum of 0.11 pmol of [125I-Tyr1]somatostatin was bound per mg of cell protein, equivalent to 13,000 receptor sites per cell. The rate constant for binding (kon) was 8 x 10(7) M(-1) min(-1). The rate constant for dissociation (koff) was determined by direct measurement to be 0.02 min(-1) both in the presence and absence of excess nonradioactive somatostatin. Binding of [125I-Tyr1]somatostatin was not inhibited by 10(-7) M thyrotropin-releasing hormones. Substance P, neurotensin, luteinizing hormone-releasing hormone, calcitonin, adrenocorticotropin, or insulin. Of seven nonpituitary cell lines tested, none had specific receptors for somatostatin. Somatostatin was shown to inhibit prolactin and growth hormone production by CH4C1 cells. The dose-response characteristics for binding and the biological actions of somatostatin were essentially coincident. Furthermore, among several clonal pituitary cell strains tested, only those which had receptors for somatostatin showed a biological response to the hormone. We conclude that the characterized somatostatin receptor is necessary for the biological actions of somatostatin on GH4C1 cells.  相似文献   

9.
Dihydrosomatostatin (0.001–1.0 ug/ml) inhibited both insulin and glucagon secretion by monolayer cell cultures of newborn rat pancreas. When cultures were incubated with somatostatin and then rinsed, the effect of somatostatin appeared to last longer on the pancreatic alpha cell than on the beta cell as indicated by a more prolonged inhibition of glucagon secretion than of insulin release. Submaximal inhibition of glucose-stimulated insulin release by somatostatin was partially reversed by increasing the concentration of glucose. We conclude that the effect of somatostatin appears to be mediated directly on the pancreatic endocrine cells.  相似文献   

10.
DNA sequences containing the 5' flanking region of the rat somatostatin gene were linked to the coding sequence of the bacterial chloramphenicol acetyl transferase gene. This recombinant plasmid is active in expressing CAT activity in the neuronally derived, somatostatin producing CA-77 cell line. Deletion analyses of the somatostatin promoter show that the sequences proximal to position -60, relative to the cap site are required for expression of this promoter. A 4 base pair deletion of residues -46 through -43 within the somatostatin promoter results in a down mutation in vivo suggesting the existence of an element critical for the expression of the promoter in CA-77 cells. In addition, the somatostatin recombinant and its 5' deletion constructs preferentially express CAT activity in CA-77 cells, whereas only basal level of expression is observed in HeLa, BSC40, and RIN-5F cell lines, pointing to the cell specific nature of this promoter.  相似文献   

11.
F Diel  S Szabo 《Regulatory peptides》1986,13(3-4):235-243
Somatostatin prevents hemorrhagic gastric erosions produced by ethanol. In this paper we describe studies with linear (reduced) and cyclic (oxidized) synthetic somatostatin-14 in the rat model of ethanol-induced gastric mucosal injury. The linear form of somatostatin was more potent at concentrations of 10(-9) to 10(-8) mol per rat than the cyclic isomere. However, at a concentration of 10(-7) mol per rat i.p. injection of linear somatostatin significantly (P less than 0.01) enhanced gastric erosions caused by the alcohol. The area of hemorrhagic mucosal lesions correlated significantly (r = -0.846) with mast cell depletion in the gastric mucosa of the animals. Increased vascular permeability and mast cell degranulation were also observed after intradermal injection of linear or cyclic somatostatin. The 'cytoprotective' as well as the aggravating potency of linear somatostatin may be connected to gastric mucosal mast cell activity in the rat.  相似文献   

12.
C Roy 《FEBS letters》1984,169(2):133-137
LLC-PK1L cells, a kidney-derived cell line grown in defined medium, possess a vasopressin-sensitive adenylate cyclase. Somatostatin was able to inhibit the vasopressin-induced increase in adenylate cyclase activity, without affecting the basal enzyme activity. This inhibition was competitive. No effect of somatostatin could be detected on [3H]vasopressin binding suggesting an interaction of somatostatin with the vasopressin-sensitive system distal to the hormone-receptor interaction. At variance with N6-L-2-phenylisopropyladenosine (PIA), GTP did not potentiate the inhibition by somatostatin. The inhibition of the vasopressin stimulation by somatostatin and that by PIA were additive. Changing the composition of the cell growth medium increased the number of vasopressin receptors per cell. Cells with a high number of vasopressin receptors were less sensitive to inhibition by somatostatin. Such results suggested that somatostatin and vasopressin receptors and/or the inhibitory (Ni) and stimulatory (Ns) regulatory transducing components are regulated by different mechanisms.  相似文献   

13.
The peptide hormone somatostatin, as well as the somatostatin analog octreotide, induces rapid morphological changes in neuroendocrine cells. The effect can be detected in less than 2 min: retraction fibers are formed, cells round up and cell-cell contacts are broken. Somatostatin-dependent cell contraction is inhibited by Y-27632, indicating that this effect is dependent on Rho kinase. In BON1 cells, the somatostatin-induced inhibition of forskolin-induced secretion of chromogranin A is not blocked by Y-27632. It is therefore concluded that the inhibitory effect of somatostatin in forskolin-stimulated cells is not dependent on cell contraction.  相似文献   

14.
Human non-small cell lung cancers (NSCLCs) express receptors for somatostatin. The cytotoxic analog of somatostatin AN-162 (AEZS-124), consisting of doxorubicin linked to a somatostatin analog RC-121 binds to receptors for somatostatin and is targeted to tumors expressing these receptors. The aim of this study was to investigate the effect of targeted cytotoxic somatostatin analog AN-162 on a panel of human NSCLC cell lines (A549, H460, H838, H1299) in vitro (at 0.5–100 μM concentrations) and in vivo on H460 and H1299 NSCLCs xenografted into nude mice (at the dose of 2.5 μmol/kg, i.v., once a week). The expression of mRNA for somatostatin receptor subtypes was investigated by RT-PCR in cell lines and tumor tissues. Somatostatin receptor proteins were also characterized by ligand competition assay and Western blotting. AN-162 significantly decreased cell proliferation in vitro and tumor growth (p < 0.05 vs. all groups) of H460 and H1299 NSCLCs in vivo. Based on real-time PCR array data, AN-162 induced several apoptosis-related genes in vivo in both models. Our results suggest that cytotoxic somatostatin analog AN-162 (AEZS-124) should be considered for the further development of a therapy of patients with NSCLC.  相似文献   

15.
Summary Somatostatin cells in the stomach of the rat have a characteristic shape and distribution. In the antral mucosa they occur together with gastrin cells and enterochromaffin cells at the base of the glands. In the oxyntic mucosa they are scattered along the entire glands with some predominance in the zone of parietal cells. Throughout the gastric mucosa the somatostatin cells possess long and slender processes that emerge from the base of the cell and end in clublike swellings. Such processes appear to contact a certain proportion of neighbouring gastrin cells in the antral mucosa and parietal cells in the oxyntic mucosa.Exogenous somatostatin given by intravenous infusion to conscious rats counteracted the release of gastrin stimulated by feeding, elevated antral pH or vagal excitation. Gastrin causes parietal cells to secrete HCl and endocrine cells in the oxyntic mucosa to mobilise and synthesise histamine. Somatostatin is known to block the response of the parietal cells to gastrin. In contrast, somatostatin did not block the response of the histamine-storing endocrine cells to gastrin, perhaps because these endocrine cells lack receptors to somatostatin. Conceivably, somatostatin in the gastric mucosa has a paracrine mode of action. The observations of the present study suggest that somatostatin may affect some, but not all of the various cell types in the stomach. Under physiological conditions this selectivity may be achieved in the following ways: 1) Communication may be based on direct cell-to-cell contact. 2) Only certain cell types are supplied with somatostatin receptors.  相似文献   

16.
There have been few studies of physiological importance on the regulation of somatostatin by hormones. We have studied the effect of the synthetic glucocorticoid dexamethasone on somatostatin production in the human medullary thyroid carcinoma TT cell line, a model for somatostatin production by the parafollicular cell. Dexamethasone inhibited somatostatin production in a dose-related manner with a maximal effect at a concentration of 10(-6) M. TT cells treated with dexamethasone (10(-6) M) showed an almost complete inhibition of somatostatin peptide production by 48 h of treatment. Molecular sizing chromatography demonstrated a decrease in both the probable somatostatin precursor (13,000 dalton) and the fully processed peptide. Analysis of mRNA content by hybridization revealed that dexamethasone also caused a decrease in detectable somatostatin mRNA. The hybridizable somatostatin mRNA decreased to approximately 50% of basal levels within 12 h of treatment. Northern blot hybridization showed a decrease in a single RNA species representing mature somatostatin mRNA. Dose-response experiments revealed inhibition of both peptide and mRNA at concentrations from 1 X 10(-8) to 1 X 10(-5) M dexamethasone. Four days after withdrawal from dexamethasone treatment, peptide and mRNA levels were higher than dexamethasone-treated controls. The sex steroid estradiol had no inhibitory effect on somatostatin production. These results suggest a potential regulator of somatostatin production and provide a system for the study of somatostatin gene regulation.  相似文献   

17.
18.
Clinical management of proliferative diabetic retinopathy has changed very little in the last 5 decades, relying primarily on laser ablation of the retinal vasculature. Several lines of clinical and experimental evidence suggest that somatostatin analogues may be efficacious in inhibiting neovascularization associated with proliferative retinopathy but the mechanism of action for these compounds is unclear. Inhibition of growth hormone secretion and the subsequent suppression of insulin-like growth factor 1 (IGF-1) production by somatostatin has been suggested as the mechanism of action, however, in vitro studies suggest that somatostatin analogues suppress endothelial cell growth through a direct, somatostatin receptor-mediated inhibition of pro-survival signaling pathways. The advent of a new generation of modified peptide and peptidomimetic somatostatin analogues has allowed investigators to more carefully define the receptor subtypes responsible for somatostatin-induced endothelial cell death and may eventually lead to the clinical development of somatostatin analogues that can reduce endothelial cell proliferation, independent of suppression of circulating hormone levels.  相似文献   

19.
Opioids and somatostatin analogs have been implicated in the modulation of renal water handling, but whether their action is accomplished through central and/or peripheral mechanisms remains controversial. In different cell systems, on the other hand, opioids and somatostatin inhibit cell proliferation. In the present study, we have used an established cell line, derived from opossum kidney (OK) proximal tubules, in order to characterize opioid and somatostatin receptors and to investigate the action of opioids and somatostatin on tubular epithelial tissue. Our results show the presence of one class of opioid binding sites with kappa1 selectivity (KD 4.6 ± 0.9 nM, 57,250 sites/cell), whereas delta, mu, or other subtypes of the kappa site were absent. Somatostatin presents also a high affinity site on these cells (KD 24.5 nM, 330,000 sites/cell). No effect of either opioids or somatostatin on the activity of the Na+/Pi cotransporter was observed, indicating that these agents do not affect ion transport mechanisms. However, opioid agonists and somatostatin analogs decrease OK cell proliferation in a dose-dependent manner; in the same nanomolar concentration range, they displayed reversible specific binding for these agents. The addition of diprenorphine, a general opioid antagonist, reversed the effects of opioids, with the exception of morphine. Furthermore, morphine interacts with the somatostatin receptor in this cell line too, as was the case in the breast cancer T47D cell line. Our results indicate that in the proximal tubule opioids and somatostatin do not affect ion transport, but they might have a role in the modulation of renal cell proliferation either during ontogenesis or in kidney repair. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号