首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isopentenyl pyrophosphate isomerase, farnesyl pyrophosphate synthetase, and geranylgeranyl pyrophosphate synthetase were detected in cell-free extracts of Bombyx mori and were partially purified by hydroxyapatite and Sephadex G-100 chromatography. Two forms of farnesyl pyrophosphate synthetase were chromatographically separated. They were designated as farnesyl pyrophosphate synthetases I and II in the order of their elution from hydroxyapatite. Both enzymes catalyzed the exclusive formation of (E,E)-farnesyl pyrophosphate from isopentenyl pyrophosphate and either dimethylallyl pyrophosphate or geranyl pyrophosphate. However, they were not interconvertible, unlike the enzyme from pig liver. These two enzymes resembled each other in pH optima and molecular weights but differed in susceptibility to metal ions. Farnesyl pyrophosphate synthetase II was stimulated by Triton X-100 while synthetase I was inhibited by the same reagent.  相似文献   

2.
Pyrophosphate linkages have a number of important roles in biology and are also formed chemically with great ease. They often are unwanted products, such as in the nonenzymatic oligomerization of mononucleotides. We have found that Zr(4+)- and Th(4+)-ions catalyze the symmetrical hydrolysis of pyrophosphate linkages. Oligonucleotide analogs linked by pyrophosphate bonds are substantially degraded in the presence of these metals, even at 0 degrees C. Conditions are described which permit the decapping of a pyrophosphate capped oligonucleotide. Oligodeoxynucleotides can be decapped by this procedure without cleavage of phosphodiester linkages. Oligoribonucleotides are susceptible to partial hydrolysis and require purification by HPLC after decapping.  相似文献   

3.
4.
5.
6.
7.
Ab initio quantum mechanical calculations were used to study the hydrolysis reaction H4P2O7 + H2O in equilibrium with 2H3PO4, as well as some molecular properties of the reactants and products. SCF calculations with several basis sets ranging from minimal to extended with polarization functions were used to look at the basis dependency of the reaction enthalpies and optimized geometries. Although the minimal basis sets yield erratic predictions of the enthalpy, when a more extended basis (3-21G*) was used for the geometry optimization, and the total energies of the reactants and products were computed with this and larger basis sets, we obtained more consistent predictions of the structural properties of the P-O-P bridge and of the heat of the hydrolysis reaction (delta E = -7.39 kcal/mol at the SCF/6-31G** level). A comparison is made with previous estimates performed with smaller basis sets and without taking into account the electron correlation effects, which are calculated in the present work. The inclusion of the zero point energy calculated using the harmonic approximation, and of the electronic correlation energy determined at the MBPT(2) level, raised the computed heat of the reaction to -3.83 kcal/mol, and when an estimate for the thermal energy was added, the value obtained was of -3.38 kcal/mol. In conclusion, we found that the hydrolysis of pyrophosphate should be exothermic in the gas phase. The implications of this result in relation to some recent theories about enzyme catalysis are discussed.  相似文献   

8.
9.
This minireview in memory of Daniel I. Arnon, pioneer in photosynthesis research, concerns properties of the first and still only known alternative photophosphorylation system, with respect to the primary phosphorylated end product formed. The alternative to adenosine triphosphate (ATP), inorganic pyrophosphate (PPi), was produced in light, in chromatophores from the photosynthetic bacterium Rhodospirillum rubrum, when no adenosine diphosphate (ADP) had been added to the reaction mixture (Baltscheffsky H et al. (1966) Science 153: 1120–1122). This production of PPi and its capability to drive energy requiring reactions depend on the activity of a membrane bound inorganic pyrophosphatase (PPase) (Baltscheffsky M et al. (1966) Brookhaven Symposia in Biology, No. 19, pp 246–253); (Baltscheffsky M (1967) Nature 216: 241–243), which pumps protons (Moyle J et al. (1972) FEBS Lett 23: 233–236). Both enzyme and substrate in the PPase (PPi synthase) are much less complex than in the case of the corresponding adenosine triphosphatase (ATPase, ATP synthase). Whereas an artificially induced proton gradient alone can drive the synthesis of PPi, both a proton gradient and a membrane potential are required for obtaining ATP. The photobacterial, integrally membrane bound PPi synthase shows immunological cross reaction with membrane bound PPases from plant vacuoles (Nore BF et al. (1991) Biochem Biophys Res Commun 181: 962–967). With antibodies against the purified PPi synthase clones of its gene have been obtained and are currently being sequenced. Further structural information about the PPi synthase may serve to elucidate also fundamental mechanisms of electron transport coupled phosphorylation. The existence of the PPi synthase is in line with the assumption that PPi may have preceded ATP as energy carrier between energy yielding and energy requiring reactions.  相似文献   

10.
P1-Dolichyl P2-ALPHA-D-mannopyranosyl pyrophosphate (9) has been chemically synthesized by a method developed for the corresponding citronellyl derivative, which also contains a saturated alpha isoprene residue. In each case, the P1-polyisoprenyl P2-diphenyl pyrophosphate was treated with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate to give a fully acetylated pyrophosphate diester, which was purified chromatographically and subsequently deacetylated. The citronellyl and dolichyl pyrophosphate diesters were compared with the previously synthesized citronellyl and dolichyl alpha-D-mannopyranosyl phosphate, respectively, by chromatography and by hydrolysis experiments. Good separations of the monophosphate from the corresponding pyrophosphate were achieved by silica gel tlc in a variety of solvent systems. Brief dilute acid hydrolysis of both the mono- and pyrophosphate diesters gave D-mannose and no alpha-D-mannosyl phosphate, the other products being polyprenyl phosphate and pyrophosphate, respectively. When the polyprenyl alpha-D-mannopyranosyl mono- and pyrophosphate diesters were treated with hot dilute alkali, the major products were polyprenyl phosphate and substances arising from the breakdown of D-mannose, indicating that the alpha-D-mannosyl phosphate bond was the most labile linkage in both compounds. However, the formation of a small proportion of free dolichol indicated that alpha-D-mannosyl phosphate was also formed to a minor extent. The interpretation of the results of the alkaline hydrolysis was complicated by the instability of D-mannose under basic conditions, it being almost completely degraded by even a brief treatment.  相似文献   

11.
12.
H Sanemori  Y Egi    T Kawasaki 《Journal of bacteriology》1976,126(3):1030-1036
The pathway of thiamine pyrophosphate (TPP) biosynthesis, which is formed either from exogeneously added thiamine or from the pyrimidine and thiazole moieties of thiamine, in Micrococcus denitrificans was investigated. The following indirect evidence shows that thiamine pyrophosphokinase (EC 2.7.6.2) catalyzes the synthesis of TPP from thiamine: (i) [35S]thiamine incubated with cells of this microorganism was detected in the form of [35S]thiamine; (ii) thiamine gave a much faster rate of TPP synthesis than thiamine monophosphate (TMP) when determined with the extracts; and (iii) a partially purified preparation of the extracts can use thiamine, but not TMP, as the substrate. The activities of the four enzymes involved in TMP synthesis from pyrimidine and thiazole moieties of thiamine were detected in the extracts of M. denitrificans. The extracts contained a high activity of the phosphatase, probably specific for TMP. After M. denitrificans cells were grown on a minimal medium containing 3 mM adenosine, which causes derepression of de novo thiamine biosynthesis in Escherichia coli, the activities of the four enzymes involved with TMP synthesis, the TMP phosphatase, and the thiamine pyrophosphokinase were enhanced two- to threefold. These results indicate that TPP is synthesized directly from thiamine without forming TMP as an intermediate and that de novo synthesis of TPP from the pyrimidine and thiazole moieties involves the formation of TMP, followed by hydrolysis to thiamine, which is then converted to TPP directly. Thus, the pathway of TPP synthesis from TMP synthesized de novo in M. denitrificans is different from that found in E. coli, in which TMP synthesized de novo is converted directly to TPP without producing thiamine.  相似文献   

13.
The syntheses of 6,7-dihydrogeraniol and of its pyrophosphate are described. It is shown that this analogue of geranyl pyrophosphate is a substrate for liver prenyltransferase and that the product synthesized by this enzyme from it and isopentenyl pyrophosphate is 10,11-dihydrofarnesyl pyrophosphate. The K(m) value for 6,7-dihydrogeranyl pyrophosphate was determined to be 1.11+/-0.19mum as compared with 4.34+/-1.71mum for geranyl pyrophosphate. The maximum reaction velocity with the artifical substrate was, however, only about one-fourth of that observed with geranyl pyrophosphate. The binding of isopentenyl pyrophosphate to the enzyme was not affected by the artificial substrate.  相似文献   

14.
The prenyl transferase undecaprenyl pyrophosphate synthetase was partially purified from the cytosolic fraction of Escherichia coli. Its enzymic products were characterized as a family of cis-polyprenyl phosphates, which ranged in carbon number from C55 to C25. The enzyme is constituted of two subunits of approximately 30,000 molecular weight. A radiolabeled photolabile analogue of t,t-farnesyl pyrophosphate, [3H]2-diazo-3-trifluoropropionyloxy geranyl pyrophosphate, was shown to label Lactobacillus plantarum and E. coli undecaprenyl pyrophosphate synthetase on UV irradiation in the presence of isopentenyl pyrophosphate and divalent cation. The only labeled polypeptide migrated on electrophoresis in a sodium dodecyl sulfate-polyacrylamide gel at a molecular weight of approximately 30,000. No protein was radiolabeled when the natural substrate, t,t-farnesyl pyrophosphate was included in the irradiation mixture. Irradiation in the presence of MgCl2 without isopentenyl pyrophosphate gave less labeling of the polypeptide. Irradiation with only isopentenyl pyrophosphate gave little labeling of the polypeptide. When the enzyme was irradiated with 3H-photoprobe, [14C]isopentenyl pyrophosphate, and MgCl2, the labeled polypeptide gave a ratio of 14C/3H that indicated the product must also bind to the enzyme on irradiation. These results demonstrate the ability to radiolabel the allylic pyrophosphate binding site and possibly product binding site of undecaprenyl pyrophosphate synthetase by a process which is favored when both cosubstrate and divalent cation are present.  相似文献   

15.
Although the geranylgeranyl pyrophosphate synthetase activity was very low compared with farnesyl pyrophosphate synthetase activity on imbibition of pumpkin seed, the former increased markedly and the latter decreased as germination proceeded.  相似文献   

16.
17.
Physiologic roles of highly phosphorylated inositol phosphates, including those containing pyrophosphate groups, have been the focus of much recent interest. In the April 6, 2007 issue of Science, two papers (Lee et al., 2007; Mulugu et al., 2007) demonstrate the occurrence of a novel inositol pyrophosphate molecule in yeast and elucidate its role in phosphate homeostasis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号