首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
Of the 50 or so species and varieties of anopheline mosquito in India, about 20 are implicated as vectors of human malaria. Of these, perhaps the most important and widespread is Anopheles culicifacies s.l. For the first 10 years of widespread DDT spraying, An. culicifacies remained susceptible to this insecticide - indeed, some thought it lacked resistance genes altogether. By 1960 however, resistance to DDT was apparent. DDT is a cheap insecticide, and its use is still favoured for mosquito control wherever it remains effective. But by the end of the late 1970s it appeared that DDT resistance in An. culicifacies (and other species) was a major barrier to effective vector control in several areas - particularly in parts of the northwestern states. Yet in other areas DDT still seemed to be effective. There was also increasing evidence from other studies suggesting differences in An. culicifacies found in different areas - particularly differences in seasonal prevalence and man-biting activity. We now know - as Sarala Subbarao discusses here - that An. culicifacies s.l. represents a complex of at least four sibling species. But in this case, one of the most important findings is that DDT resistance is mainly associated with species B which proves to be a very poor vector of malaria. Such findings, made possible by careful cytogenetic studies, have very important consequences for malaria epidemiology and control policies.  相似文献   

2.
In Turkey, the mosquito Anopheles sacharovi has been under field selection pressure sequentially with DDT, dieldrin, malathion and pirimiphosmethyl over a period of 30 years for the purpose of malaria control. In 1984, the field population of An.sacharovi in the malarious Cukurova plain of Adana Province contained an altered acetylcholinesterase-based resistance gene giving broad spectrum resistance against organophosphorus and carbamate insecticides. The cross-resistance spectrum from this mechanism conferred resistance to malathion but not to the organophosphorus insecticide pirimiphos-methyl. Over the 6 years that pirimiphos-methyl has been applied for malaria vector control in this area, the frequency of the altered acetylcholinesterase resistance gene has declined, although in 1989 and 1990 it was still present at measurable frequencies in An.sacharovi from Cukurova. In addition to the acetylcholinesterase resistance mechanism there is evidence of an increased level of glutathione S-transferase in some of the An.sacharovi populations tested. This is known to be correlated with DDT resistance in other anophelines. In Turkish An.sacharovi, DDT resistance and elevated glutathione S-transferase occur in the same populations at similar frequencies. The continued prevalence of resistance to DDT and dieldrin, long after the 1971 cessation of DDT spraying for malaria control in Turkey, suggests that the DDT resistance gene has insufficient reduced fitness associated with it to have been lost from the field population during the past two decades. The implications of the slow decline in resistance gene frequencies in this field population are discussed in relation to mathematical models for managing resistance.  相似文献   

3.
Differential responses of Anopheles culicifacies Giles sibling species A and B to DDT were evident from higher survival rate of species B in laboratory bioassays and greater proportions of species B in DDT-sprayed villages of northern India, compared with those under HCH pressure. Both species A and B have become almost completely resistant to HCH in this area due to regular house-spraying with HCH for about the last 10 years. Because species A predominates in northern India, where it has been incriminated as an important vector of malaria, and species A is more susceptible than species B to DDT, it is suggested that DDT would control malaria transmission more effectively than HCH in this situation. Monitoring of insecticide resistance in species A is therefore recommended as the basis for future choice of insecticides to be used by the National Malaria Eradication Programme.  相似文献   

4.
Permethrin selection of DDT resistant Anopheles stephensi Liston mosquito larvae produced a reduction in susceptibility to knockdown (2 h exposure) of 17-fold, but only 1.6-fold to kill (24 h exposure). Genetic analysis, incorporating visible mutant markers, was interpreted as indicating that, through multigenic inheritance, several interacting genetic factors were collectively responsible for reduced larval susceptibility to knockdown. These were maintained together only under selection pressure, as the effect was lost quickly in the absence of selection or with outcrossing. The 30-40-fold DDT-resistance found in the parental strain was barely altered by permethrin selection, suggesting no relationship with the major source of DDT resistance. This was confirmed in single family studies. Some evidence for an additional tolerance to DDT was found to be associated with reduced larval susceptibility to permethrin.  相似文献   

5.
DDT resistance in Anopheles gambiae declines with mosquito age   总被引:1,自引:1,他引:0  
Adult Anopheles gambiae Giles mosquitoes from Zanzibar were tested on a standard discriminating dose of DDT which reliably kills susceptible mosquitoes. Adults from wild-caught larvae reared in the laboratory, and from the F1 progeny of wild-caught adults, showed less than 5% test mortality when newly-emerged, but mortality rose with age to over 90% when they were 12-14 days old. Wild-caught mixed-age adults showed an intermediate mortality rate of 25%, close to the rate predicted from laboratory results for a fully resistant population with an age-structure typical of this species in natural conditions. It is inferred that older, genetically resistant insects may be scored as susceptible, so that routine susceptibility tests with wild-caught adults underestimate the frequency of resistance. In Zanzibar, such tests probably helped to persuade spraying authorities to continue spraying DDT in spite of resistance. Resistance which is restricted to younger insects may nonetheless reduce the effectiveness of spraying.  相似文献   

6.
Abstract.  Bioassays for insecticide resistance in adult mosquitoes were conducted on samples of Anopheles gambiae Giles s.l . (Diptera: Culicidae) species collected as larvae from breeding sites in the lower Shire Valley, Malawi. The results indicate full susceptibility to permethrin, deltamethrin and malathion, but reduced susceptibility to DDT in one sample from Thom (LT50 of 8.39 min for females and 25.09 min for males). Polymerase chain reaction-based species identification of the mosquitoes assayed revealed a mixture of Anopheles arabiensis Patton and Anopheles quadriannulatus (Theobold). The LT50 did not differ significantly between species. Genotyping of the L1014F and L1014S kdr alleles showed all mosquito specimens to be homozygous wild type; thus the reduced susceptibility detected is not attributable to target site insensitivity and instead is likely to be metabolic in nature. Anopheles quadriannulatus is characteristically zoophagic and exophilic. Indeed, of 82 Anopheles collected through knockdown collections within dwellings, only one was An. quadriannulatus and the rest were An. arabiensis . They are unlikely, therefore, to have been exposed to selection pressure arising from insecticide-treated net usage or to DDT indoor residual spraying. Therefore, it is suggested that this example of reduced susceptibility to DDT in An. quadriannulatus reflects selection in the larval stages.  相似文献   

7.
Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT.  相似文献   

8.
Benin has embraced World Health Organization-recommended preventive strategies to control malaria. Its National Malaria Control Programme is implementing and/or coordinating various actions and conducting evaluation trials of mosquito control strategies. Mosquito control is based on the use of insecticide-treated nets and indoor residual spraying, but the efficacy of these strategies to control malaria vectors is endangered by insecticide resistance. Here, we present the results of a nationwide survey on the status of insecticide susceptibility and resistance in Anopheles gambiae s.l. (Diptera: Culicidae) carried out in Benin in 2006-2007 (i.e. before extensive vector control was undertaken). Overall, our study showed that the S molecular form of An. gambiae s.s. predominates and is widely distributed across the country, whereas the frequency of the M form shows a strong decline with increasing latitude. Susceptibility to DDT, permethrin, carbosulfan and chlorpyrifos-methyl was assessed; individual mosquitoes were identified for species and molecular forms, and genotyped for the kdr and ace-1 loci. Full susceptibility to chlorpyrifos-methyl was recorded and very few samples displayed resistance to carbosulfan. High resistance levels to permethrin were detected in most samples and almost all samples displayed resistance to DDT. The kdr-Leu-Phe mutation was present in all localities and in both molecular forms of An. gambiae s.s. Furthermore, the ace-1(R) mutation was predominant in the S form, but absent from the M form. By contrast, no target modification was observed in Anopheles arabiensis. Resistance in the An. gambiae S molecular form in this study seemed to be associated with agricultural practices. Our study showed important geographic variations which must be taken into account in the vector control strategies that will be applied in different regions of Benin. It also emphasizes the need to regularly monitor insecticide resistance across the country and to adapt measures to manage resistance.  相似文献   

9.
Indoor residual spraying with DDT was the principle method by which malaria transmission was eradicated or greatly reduced in many countries between the late 1940s and 1970s. Since then, decreasing use of DDT has been associated with a resurgence of malaria in India, Sri Lanka, former Soviet Central Asia, Zanzibar, Venezuela and several other Latin American countries. In India and Zanzibar, DDT resistance in vectors, as well as a decline in spray coverage, are probable causes of reduced effectiveness of DDT in recent decades. In southern Europe, eradication of malaria transmission was achieved by DDT spraying in the 1940s and 50s and eradication has been sustained by adequate treatment of imported human malaria cases. In the highlands of Madagascar and South Africa, recent reversion to DDT spraying has been successful in stemming resurgences of malaria. Continued use of DDT for vector control, but not for agriculture, is approved by the Stockholm Convention on Persistent Organic Pollutants. DDE residues in breast milk have been associated with DDT anti-malaria spraying in South Africa, but it is not known whether this is harmful. A claimed association of DDE residues with breast cancer have not been substantiated. There is a recent report of association of DDE residues with probability of premature birth; the possible relevance of this to anti-malarial use of DDT should be investigated. In Colombia, testing of the DDT stockpile for suspensibility, DDT resistance in Anopheles darlingi and investigation of the present affordability of widespread spraying with DDT, compared with alternative chemicals, are recommended.  相似文献   

10.
Successive spraying with DDT suspensions of the adults of a wild colony of Drosophila melanogaster and the progeny of survivors enhanced the resistance to that insecticide.
The rate at which resistance increased depended on: (1) the relative proportion of resistants to susceptible individuals, or (2) the intensity of selection as measured by the concentration of DDT, the proportion killed or on both. The resistance of the populations of the insects fluctuated considerably whether subjected to successive sprayings or not, and in one sprayed series there was some indication of a rhythm with peaks of susceptibility occurring at regular intervals.
Enhanced resistance may show a change of slope in the probit log concentration regression line, leading to different relative values at different levels of mortality, or by a parallel shift of the regression line. The former appears to be a preliminary stage of selection and indicates a change in the frequency distribution within a population.
Increasing the concentration of DDT, slowly or rapidly, may have enhanced resistances at an increased rate, but the series sprayed with the lower initial concentration reached finally the same end point, as judged by the values of log lc . 50.
During the course of these experiments the insects developed sensitivity to carbon dioxide (used in anaesthesis). Its bearing on our work is considered in Part II.  相似文献   

11.
Insecticide resistance in the malaria vector Anopheles gambiae s.l. (Diptera: Culicidae) threatens insecticide‐based control efforts, necessitating regular monitoring. We assessed resistance in field‐collected An. gambiae s.l. from Jinja, Uganda using World Health Organization (WHO) biosassays. Only An. gambiae s.s. and An. arabiensis (?70%) were present. Female An. gambiae exhibited extremely high pyrethroid resistance (permethrin LT50 > 2 h; deltamethrin LT50 > 5 h). Female An. arabiensis were resistant to permethrin and exhibited reduced susceptibility to deltamethrin. However, while An. gambiae were DDT resistant, An. arabiensis were fully susceptible. Both species were fully susceptible to bendiocarb and fenitrothion. Kdr 1014S has increased rapidly in the Jinja population of An. gambiae s.s. and now approaches fixation (?95%), consistent with insecticide‐mediated selection, but is currently at a low frequency in An. arabiensis (0.07%). Kdr 1014F was also at a low frequency in An. gambiae. These frequencies preclude adequately‐powered tests for an association with phenotypic resistance. PBO synergist bioassays resulted in near complete recovery of pyrethroid susceptibility suggesting involvement of CYP450s in resistance. A small number (0.22%) of An. gambiae s.s. ×An. arabiensis hybrids were found, suggesting the possibility of introgression of resistance alleles between species. The high levels of pyrethroid resistance encountered in Jinja threaten to reduce the efficacy of vector control programmes which rely on pyrethroid‐impregnated bednets or indoor spraying of pyrethroids.  相似文献   

12.
G Yan  D D Chadee  D W Severson 《Genetics》1998,148(2):793-800
Information on genetic variation within and between populations is critical for understanding the evolutionary history of mosquito populations and disease epidemiology. Previous studies with Drosophila suggest that genetic variation of selectively neutral loci in a large fraction of genome may be constrained by fixation of advantageous mutations associated with hitchhiking effect. This study examined restriction fragment length polymorphisms of four natural Aedes aegypti mosquito populations from Trinidad and Tobago, at 16 loci. These populations have been subjected to organophosphate (OP) insecticide treatments for more than two decades, while dichlor-diphenyltrichlor (DDT) was the insecticide of choice prior to this period. We predicted that genes closely linked to the OP target loci would exhibit reduced genetic variation as a result of the hitchhiking effect associated with intensive OP insecticide selection. We also predicted that genetic variability of the genes conferring resistance to DDT and loci near the target site would be similar to other unlinked loci. As predicted, reduced genetic variation was found for loci in the general chromosomal region of a putative OP target site, and these loci generally exhibited larger F(ST) values than other random loci. In contrast, the gene conferring resistance to DDT and its linked loci show polymorphisms and genetic differentiation similar to other random loci. The reduced genetic variability and apparent gene deletion in some regions of chromosome 1 likely reflect the hitchhiking effect associated with OP insecticide selection.  相似文献   

13.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

14.
Lipsitch M  Sousa AO 《Genetics》2002,161(4):1599-1607
Infections have long been thought to exert natural selection on humans. Infectious disease resistance is frequently invoked as a mechanism shaping human genetic diversity, but such hypotheses have rarely been quantitatively evaluated with direct measures of disease-related mortality. Enhancement of genetically determined resistance to tuberculosis by natural selection has been proposed as a factor explaining the decline of tuberculosis in Europe and North America in the period 1830-1950 (before the advent of antimicrobial chemotherapy) and the apparently reduced susceptibility of Europeans and their descendants to tuberculosis infection and/or disease. We used Swedish vital statistics from 1891 to 1900 to estimate that individuals who escaped mortality from pulmonary tuberculosis (PTB) during the European tuberculosis epidemic would have enjoyed a fitness advantage of 7-15% per generation compared to individuals who were susceptible to PTB mortality; individuals with 50% protection would have had a selection coefficient of 4-7%/generation. Selection during the peak of the European TB epidemic could have substantially reduced the frequency of already rare alleles conferring increased susceptibility to PTB mortality, but only if the phenotypic effects of these alleles were very large. However, if resistant alleles were rare at the beginning of this period, 300 years would not have been long enough for such selection to increase their frequency to epidemiologically significant levels. Reductions in the frequency of rare susceptibility alleles could have played at most a small part in the decline of the epidemic in the century preceding 1950. Natural selection by PTB deaths during the European TB epidemic alone cannot account for the presently low level of TB disease observed among Europeans and their descendants just prior to the appearance of antibiotic treatment.  相似文献   

15.

Background

Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection.

Methodology/Principal findings

Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1R) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1R mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment.

Conclusion

The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention.  相似文献   

16.
Tests to evaluate the susceptibility level in Anopheles gambiae s.1. from Ouagadougou and two nearby villages have been carried out. Anopheles gambiae s.1. larvae from Ouagadougou showed complete susceptibility to organophosphates and carbamates, and adults showed low-level resistance to DDT. Nine percent survival of adult An. gambiae s.1. to one-hour exposure of 4% DDT was observed in samples from Zagtouli village while in those from Koubri village, where dieldrin also was tested, resistance to both organochlorine insecticides was detected.  相似文献   

17.
Human susceptibility and resistance to Norwalk virus infection   总被引:27,自引:0,他引:27  
Infectious diseases have influenced population genetics and the evolution of the structure of the human genome in part by selecting for host susceptibility alleles that modify pathogenesis. Norovirus infection is associated with approximately 90% of epidemic non-bacterial acute gastroenteritis worldwide. Here, we show that resistance to Norwalk virus infection is multifactorial. Using a human challenge model, we showed that 29% of our study population was homozygous recessive for the alpha(1,2)fucosyltransferase gene (FUT2) in the ABH histo-blood group family and did not express the H type-1 oligosaccharide ligand required for Norwalk virus binding. The FUT2 susceptibility allele was fully penetrant against Norwalk virus infection as none of these individuals developed an infection after challenge, regardless of dose. Of the susceptible population that encoded a functional FUT2 gene, a portion was resistant to infection, suggesting that a memory immune response or some other unidentified factor also affords protection from Norwalk virus infection.  相似文献   

18.
Abstract:  Current recommendations to delay the evolution of resistance to Bacillus thuringiensis crops are that a minimum of 5–50% of a crop-growing region should include non- B. thuringiensis varieties as refuges. These recommendations are based in part on the assumption that resistance will be inherited as a recessive trait. Laboratory microcosm experiments are described with transgenic canola expressing Cry1Ac and a non-recessive Cry1Ac resistant population of the diamondback moth Plutella xylostella , in which the effect of different sizes of refugia (0%, 20% and 50%) on resistance was compared over five generations. The LC50 values for Cry1Ac increased markedly in the P. xylostella sub-populations with 0% (>100-fold) and 20% refugia (>35-fold) but showed little change (less than fivefold increase) with 50% refugia. The results support the idea that relatively high levels of refugia (non- B. thuringiensis varieties) may be required where resistance is not functionally recessive at the level of toxin expressed in the B. thuringiensis crop.  相似文献   

19.
20.
To investigate genetic variation and seasonal fluctuation in susceptibility to insecticides, natural populations of Drosophila melanogaster were collected from Katsunuma in mid summer and late fall for two consecutive years. After isofemale lines of each population collected in each season had been established in a laboratory, the susceptibility of each line to five insecticides, including permethrin, malathion, prothiophos, fenitrothion, and DDT, was examined. Lines of each population exhibited the broad ranges of variation in susceptibility to all chemicals. Comparison between populations in different seasons indicated that genetic variation in susceptibility to organophosphates fluctuated in consistency with the population size, in which the susceptibility increased in fall. In addition, highly significant correlations were observed among responses to organophosphates, and the correlations also fluctuated with seasons. On the other hand, genetic variation in susceptibility to permethrin and DDT was less fluctuated. These results suggest that not only a common resistance factor for organophosphate resistance but also different resistance factor(s) for each insecticide could be involved within a natural population, and that the fluctuation observed in the susceptibility to organophosphates could be associated with fitness costs of organophosphate resistance factor(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号