首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbiology of biological phosphorus removal in activated sludge systems   总被引:39,自引:0,他引:39  
Activated sludge systems are designed and operated globally to remove phosphorus microbiologically, a process called enhanced biological phosphorus removal (EBPR). Yet little is still known about the ecology of EBPR processes, the microbes involved, their functions there and the possible reasons why they often perform unreliably. The application of rRNA-based methods to analyze EBPR community structure has changed dramatically our understanding of the microbial populations responsible for EBPR, but many substantial gaps in our knowledge of the population dynamics of EBPR and its underlying mechanisms remain. This review critically examines what we once thought we knew about the microbial ecology of EBPR, what we think we now know, and what still needs to be elucidated before these processes can be operated and controlled more reliably than is currently possible. It looks at the history of EBPR, the currently available biochemical models, the structure of the microbial communities found in EBPR systems, possible identities of the bacteria responsible, and the evidence why these systems might operate suboptimally. The review stresses the need to extend what have been predominantly laboratory-based studies to full-scale operating plants. It aims to encourage microbiologists and process engineers to collaborate more closely and to bring an interdisciplinary approach to bear on this complex ecosystem.  相似文献   

2.
Changes in the microbial community of an enhanced biological phosphorus removal (EBPR) activated sludge system under different influent phosphorus/carbon (P/C) ratio conditions were investigated through evaluation of population respiratory quinone profiles. A total of 13 types of respiratory quinone homologs consisting of 3 types of ubiquinones (UQ) and 10 types of menaquinones (MK) were identified in this study. The dominant quinones were UQ-8 and MK-7 throughout the operational period. A higher P/C ratio (0.1) in the influent stimulated an increase in the mole fractions of UQ-8, MK-7, MK-8(H4), MK-9(H4) and MK-8(H8), suggesting that actinobacterial polyphosphate-accumulating organisms (PAO) containing partially hydrogenated MK, mainly MK-8(H4), were contributing to EBPR. However, when the P/C ratio gradually decreased from 0.1 to 0.01, the mole fractions of UQ-8 increased from 0.46 to 0.58, while MK-7, MK-8(H2), MK-8(H4), MK-9(H4), MK-8(H8) and MK-9(H6) markedly decreased. These changes in the respiratory quinone profiles suggest that glycogen-accumulating organisms corresponding to some Gammaproteobacteria had become dominant populations with a decrease in actinobacterial PAO. On the other hand, increasing abruptly the P/C ratio to 0.1 further caused an increase in the mole fraction of UQ-8, indicating that Rhodocyclus-related organisms were important PAO.  相似文献   

3.
The objective of this research was to interrogate and develop a better understanding for a process to achieve post-anoxic denitrification without exogenous carbon augmentation within enhanced biological phosphorus removal (EBPR). Sequencing batch reactors fed real wastewater and seeded with mixed microbial consortia were operated under variable anaerobic-aerobic-anoxic and organic carbon loading conditions. The process consistently achieved phosphorus and nitrogen removal, while the observed specific denitrification rates were markedly higher than expected for post-anoxic systems operated without exogenous organic carbon addition. Investigations revealed that post-anoxic denitrification was predominantly driven by glycogen, an intracellular carbon storage polymer associated with EBPR; moreover, glycogen reserves can be significantly depleted post-anoxically without compromising EBPR. Success of the proposed process is predicated on providing sufficient organic acids in the influent wastewater, such that residual nitrate carried over from the post-anoxic period is reduced and polyhydroxyalkanoate (PHA) synthesis occurs.  相似文献   

4.
This study compared the PHAs production behavior of sludges from the anaerobic and oxic phases of an enhanced biological phosphorus removal (EBPR) system. This was accomplished by using the kinetics and stoichiometric coefficients obtained from aerobic batch tests to evaluate the performance of these two sludges. Experimental results indicated that the metabolic behavior of the sludges for PHAs production depend significantly on the operating sludge retention time (SRT) of the EBPR system. The oxic sludge with 5 days of SRT exhibited better PHAs production performance than anaerobic sludge. Conversely, the anaerobic sludge with 15 days of SRT had superior PHAs production capability compared to oxic sludge. These comparisons suggest that whether anaerobic or oxic sludge should be employed for PHAs production depends mainly on the operating SRT of the EBPR system.  相似文献   

5.
Park KY  Lee JW  Song KG  Ahn KH 《Bioresource technology》2011,102(3):2462-2467
Potential use of the municipal sludge ozonolysate as a carbon source was examined for phosphorus removal from low strength wastewater in a modified intermittently decanted extended aeration (IDEA) process. At ozone dosage of 0.2 g O3/g solids, readily biodegradable COD accounted for about 36% of COD from sludge ozonolysate. The denitrification potential of ozonolysate as a carbon source was comparable to that of acetate. Although, the first order constant for phosphorus release with the ozonolysate was half that of acetate, it was much higher than that of wastewater. Continuous operation of the modified IDEA process showed that the removals of nitrogen and phosphorus were simultaneously enhanced by addition of the ozonolysate. Phosphorus release was significantly induced after complete denitrification indicating that phosphorus release was strongly depended on nitrate concentration. Effectiveness of the ozonolysate as a carbon source for EBPR was also confirmed in a track study of the modified IDEA.  相似文献   

6.
The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. We investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. We observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. From these observations, we postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimisation of EBPR. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 507–515, 1999.  相似文献   

7.
A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like beta-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg(2+), and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms.  相似文献   

8.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
采用序批式反应器(SBR),对比厌氧/好氧(A/O)和厌氧/缺氧(A/A)2种运行模式对模拟生活和工业混合污水同时脱氮除磷的效能。结果表明:反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集,稳定运行的2种模式对有机物和P的去除率分别保持在90%和85%以上,且A/A SBR具有更强的释磷能力,其释磷量比A/O SBR高出1.2倍。进一步试验表明:磷的释放在有无硝酸盐的情况下效果是不同的。2个系统内污泥均有反硝化除磷能力,A/A SBR中所含反硝化聚磷菌(DPAO)的比例是A/O SBR的4.56倍。2种模式出水水质都能取得较好的效果,且能实现同步除磷脱氮,而反硝化除磷在生物除磷方面更具优势。  相似文献   

10.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4.  相似文献   

11.

Background

Lateral gene transfer (LGT) is an important evolutionary process in microbial evolution. In sewage treatment plants, LGT of antibiotic resistance and xenobiotic degradation-related proteins has been suggested, but the role of LGT outside these processes is unknown. Microbial communities involved in Enhanced Biological Phosphorus Removal (EBPR) have been used to treat wastewater in the last 50 years and may provide insights into adaptation to an engineered environment. We introduce two different types of analysis to identify LGT in EBPR sewage communities, based on identifying assembled sequences with more than one strong taxonomic match, and on unusual phylogenetic patterns. We applied these methods to investigate the role of LGT in six energy-related metabolic pathways.

Results

The analyses identified overlapping but non-identical sets of transferred enzymes. All of these were homologous with sequences from known mobile genetic elements, and many were also in close proximity to transposases and integrases in the EBPR data set. The taxonomic method had higher sensitivity than the phylogenetic method, identifying more potential LGTs. Both analyses identified the putative transfer of five enzymes within an Australian community, two in a Danish community, and none in a US-derived culture.

Conclusions

Our methods were able to identify sequences with unusual phylogenetic or compositional properties as candidate LGT events. The association of these candidates with known mobile elements supports the hypothesis of transfer. The results of our analysis strongly suggest that LGT has influenced the development of functionally important energy-related pathways in EBPR systems, but transfers may be unique to each community due to different operating conditions or taxonomic composition.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1752-5) contains supplementary material, which is available to authorized users.  相似文献   

12.
Polyphosphate kinase genes from full-scale activated sludge plants   总被引:1,自引:0,他引:1  
The performance of enhanced biological phosphorus removal (EBPR) wastewater treatment processes depends on the presence of bacteria that accumulate large quantities of polyphosphate. One such group of bacteria has been identified and named Candidatus Accumulibacter phosphatis. Accumulibacter-like bacteria are abundant in many EBPR plants, but not much is known about their community or population ecology. In this study, we used the polyphosphate kinase gene (ppk1) as a high-resolution genetic marker to study population structure in activated sludge. Ppk1 genes were amplified from samples collected from full-scale wastewater treatment plants of different configurations. Clone libraries were constructed using primers targeting highly conserved regions of ppk1, to retrieve these genes from activated sludge plants that did, and did not, perform EBPR. Comparative sequence analysis revealed that ppk1 fragments were retrieved from organisms affiliated with the Accumulibacter cluster from EBPR plants but not from a plant that did not perform EBPR. A new set of more specific primers was designed and validated to amplify a 1,100 bp ppk1 fragment from Accumulibacter-like bacteria. Our results suggest that the Accumulibacter cluster has finer-scale architecture than previously revealed by 16S ribosomal RNA-based analyses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In enhanced biological phosphorus removal processes, activated sludge microorganisms accumulate large quantities of polyphosphate (polyP). It was discovered that nearly all of the polyP could be released from activated sludge simply by heating it at 70 degrees C for about 1 h. The chain length of released polyP ranged from 100 to 200 phosphate (P(i)) residues. The addition of CaCl(2) precipitated approximately 75% of the total phosphorus without pH adjustment. The formed precipitate contained more P and less Ca than typical natural phosphorite deposits. Hence, in combination with enhanced biological phosphorus removal, the present method has potential for the development of a simple process for recovering phosphorus in a reusable form from wastewater.  相似文献   

14.
《Process Biochemistry》2014,49(12):2207-2213
Enhanced biological phosphorus removal (EBPR) technology has been widely considered as a key strategy in preventing eutrophication and recognized as the advancing front of research in wastewater treatment. The key to keep its high efficiency in biological phosphorus removal is to optimize the operation and management of the system. Previous research in this field has undoubtedly improved understanding of the factors hindered overall efficiency of EBPR. However, it is obvious that much remains to be learnt. This paper attempts to review the fundamental understanding in factors inhibiting the stability and reliability of the EBPR systems in the state-of-the-art research. In view of modeling the EBPR systems, an appropriate extension of the current mechanistic models with these inhibitory factors is recommended in order to better simulate and predict the behavior of full-scale and lab-scale EBPR plants. From the perspectives of the further mechanistic and multi-factors study, the direction of denitrifying dephosphatation and granules/biofilms are also discussed. This comprehensive overview will not only help us to understand the overall mechanism of the EBPR process, but also benefit the researchers and engineers to consider all the possible factors affecting the process in the urban sewage treatment plants.  相似文献   

15.
The role that microorganisms play in the biological removal of phosphate from wastewater streams has received sustained interest since its initial observation over 30 years ago. Recent advances in 'omic'-based approaches have greatly advanced our knowledge in this field and facilitated a refinement of existing enhanced biological phosphate removal (EBPR) models, which were primarily based on culture-dependent approaches that had predominantly been used to investigate the process. This minireview will focus on the recent advances made in our overall understanding of the EBPR process resulting from the use of 'omic'-based methodologies.  相似文献   

16.
Abstract Activated sludge samples from pilot plants using different processes for enhanced biological phosphorus removal were investigated for the occurrence of polyphosphate-accumulating bacteria. All samples showed a direct correlation between the relative number of phosphate-accumulating bacteria and phosphate uptake. Various species of bacteria with polyphosphate granules were found in sludge flocs, but in every case Acinetobacter -like cells formed part or the main part of the polyphosphate-accumulating bacterial population. The spectrum of the bacteria with stored polyphosphates varied, depending on the sewage composition on the one hand and on the processes used for phosphorus removal on the other hand.  相似文献   

17.
Hu et al. (2007) presented a general kinetic model for biological nutrient removal (BNR) activated sludge (AS) systems in general, but for external nitrification (EN) BNRAS (ENBNRAS) systems in particular. In this article, this model is evaluated against a large number of experimental data sets. In this evaluation, the model is first used to simulate a wide variety of conventional internal nitrification (IN) BNRAS systems to evaluate its predictions and also evaluate the model parameters suggested by Hu et al. (2007), and to calibrate those constants for which values are not available in the literature. Simulation results indicate that the model, with appropriately calibrated parameters, is capable of predicting COD removal, nitrification and denitrification and two types of biological excess phosphorus removal (BEPR), namely aerobic and anoxic/aerobic P uptake BEPR. The model is then used to simulate the ENBNRAS systems to evaluate its capacity of simulating the behaviour of this system. Simulation results show that the model is capable of simulating the behaviour of the ENBNRAS systems, including COD, nitrification, denitrification and BEPR, particularly anoxic P uptake BEPR, with the values of kinetic and stoichiometric parameters obtained in modelling conventional BNRAS systems, except for micro(NIT), K(MP), eta(PAO) and eta(H) which required calibration.  相似文献   

18.
The metabolism of polyphosphate accumulating organisms (PAOs) has been widely studied through the use of lab-scale enrichments. Various metabolic models have been formulated, based on the results from lab-scale experiments using enriched PAO cultures. A comparison between the anaerobic stoichiometry predicted by metabolic models with that exhibited by full-scale sludge in enhanced biological phosphorus removal (EBPR) wastewater treatment plants (WWTPs) was performed in this study. Batch experiments were carried out with either acetate or propionate as the sole carbon source, using sludges from two different EBPR-WWTPs in Australia that achieved different phosphorus removal performances. The results support the hypothesis that the anaerobic degradation of glycogen is the primary source of reducing equivalents generated by PAOs, however, they also suggested a partial contribution of the tricarboxylic acid (TCA) cycle in some cases. The experimental results obtained when acetate was the carbon source suggest the involvement of the modified succinate-propionate pathway for the generation of poly-beta-hydroxyvalerate (PHV). Overall, the batch test results obtained from full-scale EBPR sludge with both substrates were generally well described by metabolic model predictions for PAOs.  相似文献   

19.
增强型生物除磷过程中聚磷酸盐积累微生物的研究进展   总被引:10,自引:0,他引:10  
从磷污染控制、污水脱磷和磷资源角度论述了生物除磷的作用,并着重论述了增强型生物除磷过程中聚磷酸盐微生物(PAO)的研究历史、代谢特征及研究方法.聚磷酸盐广泛存在于自然界,但只有少数PAO微生物被分离、培养、鉴定出来.培养基能否分离出PAO和PAO能否在实验室条件下表现出polyP积累特征,均至关重要.糖原积累微生物(GAO)与PAO对碳源存在竞争关系,影响EBPR的效率.原位荧光分子杂交、激光共聚焦扫描电镜、微量放射自显影术、活体核磁共振光谱等现代科学技术的发展。使我们能够观察原位微生物群落组成、空间结构和功能变化.对PAO的深入研究,可改进污水脱磷的效率,提高对磷在环境中迁移转化的认识  相似文献   

20.
A laboratory-scale sequencing batch reactor was started-up with flocculated biomass and operated primarily for enhanced biological phosphate removal. Ten weeks after the start-up, gradual formation of granular sludge was observed. The compact biomass structure allowed halving the settling time, the initial reactor volume, and doubling the influent COD concentration. Continued operation confirmed the possibility of maintaining a stable granular biomass with a sludge volume index less than 40 ml g–1, while securing a removal efficiency of 95% for carbon, 99.6% for phosphate, and 71% for nitrogen. Microscopic observations revealed a morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号