首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.

Background

An open problem in clinical chemistry is the estimation of the optimal sampling time intervals for the application of statistical quality control (QC) procedures that are based on the measurement of control materials. This is a probabilistic risk assessment problem that requires reliability analysis of the analytical system, and the estimation of the risk caused by the measurement error.

Methodology/Principal Findings

Assuming that the states of the analytical system are the reliability state, the maintenance state, the critical-failure modes and their combinations, we can define risk functions based on the mean time of the states, their measurement error and the medically acceptable measurement error. Consequently, a residual risk measure rr can be defined for each sampling time interval. The rr depends on the state probability vectors of the analytical system, the state transition probability matrices before and after each application of the QC procedure and the state mean time matrices. As optimal sampling time intervals can be defined those minimizing a QC related cost measure while the rr is acceptable. I developed an algorithm that estimates the rr for any QC sampling time interval of a QC procedure applied to analytical systems with an arbitrary number of critical-failure modes, assuming any failure time and measurement error probability density function for each mode. Furthermore, given the acceptable rr, it can estimate the optimal QC sampling time intervals.

Conclusions/Significance

It is possible to rationally estimate the optimal QC sampling time intervals of an analytical system to sustain an acceptable residual risk with the minimum QC related cost. For the optimization the reliability analysis of the analytical system and the risk analysis of the measurement error are needed.  相似文献   

3.
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov’s forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for computing solution statistics of high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov’s backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) to reliably estimate expectations under the CME solution for several user-defined functions of the state-vector. This method is algorithmically based on reinforcement learning and it only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the “policy function”. This allows not just the numerical approximation of various expectations for the CME solution but also of its sensitivities with respect to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.  相似文献   

4.

Background

A consensus on the management of Helicobacter pylori has been developed. We aimed to assess whether dissemination through continuing medical education (CME) could enhance the adoption of this consensus among clinicians and to explore potential barriers to acceptance.

Materials and methods

Four CME courses were held to disseminate the consensus. Adoption surveys were performed to evaluate participants’ behavior in the past and their commitment to adopt the consensus in future clinical practice after CME. The gaps and barriers to adoption were also surveyed.

Results

A total of 240 physicians had attended the CME courses and received surveys with the 22 statements/substatements of the consensus. Before CME, adoption was good in six, fair in ten, and poor in six. After CME, 21 statements had either an initial >90% adoption or improvement to good or fair (< 0.001), but one still had poor even though it showed improvement (= 0.02). Although commitment was good or fair after CME, there was a >20% gap between “commitment” and “no barrier” to adoption for 11 statements, ten of which had a main barrier of financial incentives. Among the statements with fair or poor commitment after CME, less commitment to adoption and more barriers related to financial incentives were pronounced in clinicians serving in regional/district hospitals or clinics compared to those serving in medical centers.

Conclusions

Continuing medical education may improve the adoption of the H. pylori consensus. The financial incentives were shown to be a main barrier to adoption of the consensus and should be improved.  相似文献   

5.

Background

The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell.

Methods

Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process.

Results

Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data.

Conclusions

Analytical modeling based on cell death signaling molecules has been shown to be an independent and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration.
  相似文献   

6.

Background

Receptor dependent clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles into cells. During CME, the ligand-receptor interactions, development of clathrin-coated pit (CCP) and membrane evolution all act together to drive the internalization of bioparticles. In this work, we develop a stochastic computational model to investigate the CME based on the Metropolis Monte Carlo simulations.

Methods

The model is based on the combination of a stochastic particle binding model with a membrane model. The energetic costs of membrane bending, CCP formation and ligand-receptor interactions are systematically linked together.

Results

We implement our model to investigate the effects of particle size, ligand density and membrane stiffness on the overall process of CME from the drug delivery perspectives. Consistent with some experiments, our results show that the intermediate particle size and ligand density favor the particle internalization. Moreover, our results show that it is easier for a particle to enter a cell with softer membrane.

Conclusions

The model presented here is able to provide mechanistic insights into CME and can be readily modified to include other important factors, such as actins. The predictions from the model will aid in the therapeutic design of intracellular/transcellular drug delivery and antiviral interventions.  相似文献   

7.

Background  

Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described.  相似文献   

8.

Background

Translating a known metabolic network into a dynamic model requires reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model parameters are described by a posterior probability distribution, which scores the potential parameter sets, showing how well each of them agrees with the data and with the prior assumptions made.

Results

We compute posterior distributions of kinetic parameters within a Bayesian framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data. The structure of the metabolic system (i.e., stoichiometries and enzyme regulation) needs to be known, and the reactions are modelled by convenience kinetics with thermodynamically independent parameters. The parameter posterior is computed in two separate steps: a first posterior summarises the available data on enzyme kinetic parameters; an improved second posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme concentrations for one or more steady states. The data can be heterogenous, incomplete, and uncertain, and the posterior is approximated by a multivariate log-normal distribution. We apply the method to a model of the threonine synthesis pathway: the integration of metabolic data has little effect on the marginal posterior distributions of individual model parameters. Nevertheless, it leads to strong correlations between the parameters in the joint posterior distribution, which greatly improve the model predictions by the following Monte-Carlo simulations.

Conclusion

We present a standardised method to translate metabolic networks into dynamic models. To determine the model parameters, evidence from various experimental data is combined and weighted using Bayesian parameter estimation. The resulting posterior parameter distribution describes a statistical ensemble of parameter sets; the parameter variances and correlations can account for missing knowledge, measurement uncertainties, or biological variability. The posterior distribution can be used to sample model instances and to obtain probabilistic statements about the model's dynamic behaviour.  相似文献   

9.

Background  

Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity.  相似文献   

10.

Objective

To investigate the potentially prognostic value of a resting state electroencephalogram (EEG) with regards to the clinical outcome from vegetative and minimally conscious states (VS and MCS) in terms of survival six months after a brain injury.

Methods

We quantified a dynamic repertoire of EEG oscillations in resting condition with eyes closed in patients in VS and MCS. The exact composition of EEG oscillations was assessed by analysing the probability-classification of short-term EEG spectral patterns.

Results

Results demonstrated that (a) the diversity and the variability of EEG for Non-Survivors were significantly lower than for Survivors; and (b) a higher probability of mostly delta and slow-theta oscillations occurring either alone or in combination were found during the first assessment for patients with a bad outcome (i.e., those who died) within six months of an injury compared to patients who survived. At the same time, patients with a good outcome (i.e., those who survived) after six months post-injury had a higher probability of mostly fast-theta and alpha oscillations occurring either alone or in combination during the first assessment when compared to patients who died within six months of an injury.

Conclusions

Resting state EEGs properly analysed may have a potentially prognostic value with regards to the outcome from VS or MCS in terms of survival six months after a brain injury.

Significance

This work may have implications for clinical care, rehabilitative programmes and medical–legal decisions for patients with impaired consciousness states after being in a coma due to acute brain injuries.  相似文献   

11.

Background

Mental disorders may be reducible to sets of symptoms, connected through systems of causal relations. A clinical staging model predicts that in earlier stages of illness, symptom expression is both non-specific and diffuse. With illness progression, more specific syndromes emerge. This paper addressed the hypothesis that connection strength and connection variability between mental states differ in the hypothesized direction across different stages of psychopathology.

Methods

In a general population sample of female siblings (mostly twins), the Experience Sampling Method was used to collect repeated measures of three momentary mental states (positive affect, negative affect and paranoia). Staging was operationalized across four levels of increasing severity of psychopathology, based on the total score of the Symptom Check List. Multilevel random regression was used to calculate inter- and intra-mental state connection strength and connection variability over time by modelling each momentary mental state at t as a function of the three momentary states at t-1, and by examining moderation by SCL-severity.

Results

Mental states impacted dynamically on each other over time, in interaction with SCL-severity groups. Thus, SCL-90 severity groups were characterized by progressively greater inter- and intra-mental state connection strength, and greater inter- and intra-mental state connection variability.

Conclusion

Diagnosis in psychiatry can be described as stages of growing dynamic causal impact of mental states over time. This system achieves a mode of psychiatric diagnosis that combines nomothetic (group-based classification across stages) and idiographic (individual-specific psychopathological profiles) components of psychopathology at the level of momentary mental states impacting on each other over time.  相似文献   

12.

Background  

In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs.  相似文献   

13.

Background  

Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states.  相似文献   

14.

Purpose  

The purpose of this paper is to take steps towards a life cycle assessment that is able to account for changes over time in resource flows and environmental impacts. The majority of life cycle inventory (LCI) studies assume that computation parameters are constants or fixed functions of time. This assumption limits the opportunities to account for temporal effects because it precludes consideration of the dynamics of the product system.  相似文献   

15.

Background

An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better. How did the journal evaluation effects of 3IF, 4IF, and 6IF comparing with 2IF and 5IF? In order to understand these questions, we made a comparative study of impact factors with different citation time windows with the peer-reviewed scores of ophthalmologic journals indexed by Science Citation Index Expanded (SCIE) database.

Methods

The peer-reviewed scores of 28 ophthalmologic journals were obtained through a self-designed survey questionnaire. Impact factors with different citation time windows (including 2IF, 3IF, 4IF, 5IF, and 6IF) of 28 ophthalmologic journals were computed and compared in accordance with each impact factor’s definition and formula, using the citation analysis function of the Web of Science (WoS) database. An analysis of the correlation between impact factors with different citation time windows and peer-reviewed scores was carried out.

Results

Although impact factor values with different citation time windows were different, there was a high level of correlation between them when it came to evaluating journals. In the current study, for ophthalmologic journals’ impact factors with different time windows in 2013, 3IF and 4IF seemed the ideal ranges for comparison, when assessed in relation to peer-reviewed scores. In addition, the 3-year and 4-year windows were quite consistent with the cited peak age of documents published by ophthalmologic journals.

Research Limitations

Our study is based on ophthalmology journals and we only analyze the impact factors with different citation time window in 2013, so it has yet to be ascertained whether other disciplines (especially those with a later cited peak) or other years would follow the same or similar patterns.

Originality/ Value

We designed the survey questionnaire ourselves, specifically to assess the real influence of journals. We used peer-reviewed scores to judge the journal evaluation effect of impact factors with different citation time windows. The main purpose of this study was to help researchers better understand the role of impact factors with different citation time windows in journal evaluation.  相似文献   

16.

Background  

Current approaches to parameter estimation are often inappropriate or inconvenient for the modelling of complex biological systems. For systems described by nonlinear equations, the conventional approach is to first numerically integrate the model, and then, in a second a posteriori step, check for consistency with experimental constraints. Hence, only single parameter sets can be considered at a time. Consequently, it is impossible to conclude that the "best" solution was identified or that no good solution exists, because parameter spaces typically cannot be explored in a reasonable amount of time.  相似文献   

17.

Background

One central building block of population genetics is the fixation probability. It is a probabilistic understanding of the eventual fate of new mutations. Moreover, the fixation probability of new beneficial mutations plays an important effect on the adaptation of populations to environmental challenges. Great progress has been made in the study of the beneficial mutations that increases offspring number. However, the fixation probability of beneficial mutations with a shorter generation time under various genetic and ecological conditions has not been explored.

Results

Here we extend the classical result of the fixation probability of beneficial mutations obtained by Haldane, and estimate the fixation probability of a beneficial mutation with a reduced generation time in a changing environment. Assuming that the selective advantage is very small, we concentrate all the changing factors of environment on a single quantity: effective selective advantage. Using a time-dependent branching process, we get the analytic approximation for the fixation probability of beneficial mutations that decrease the generation time. Then, we apply this approximation to four interesting biological cases.

Conclusions

In these instances, we show the comparison of the approximation with the accurate values. We find that they are consistent, demonstrating the effectiveness of our result for the fixation probability of beneficial mutations conferring a reduced replication time.
  相似文献   

18.

Background

Charge states of tandem mass spectra from low-resolution collision induced dissociation can not be determined by mass spectrometry. As a result, such spectra with multiple charges are usually searched multiple times by assuming each possible charge state. Not only does this strategy increase the overall database search time, but also yields more false positives. Hence, it is advantageous to determine charge states of such spectra before database search.

Results

We propose a new approach capable of determining the charge states of low-resolution tandem mass spectra. Four novel and discriminant features are introduced to describe tandem mass spectra and used in Gaussian mixture model to distinguish doubly and triply charged peptides. By testing on three independent datasets with known validity, the results have shown that this method can assign charge states to low-resolution tandem mass spectra more accurately than existing methods.

Conclusions

The proposed method can be used to improve the speed and reliability of peptide identification.
  相似文献   

19.

Background

Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them.

Results

Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes.

Conclusions

Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia - Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.  相似文献   

20.

Background  

To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号