首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reef-building species form discrete patches atop soft sediments, and reef restoration often involves depositing solid material as a substrate for larval settlement and growth. There have been few theoretical efforts to optimize the physical characteristics of a restored reef patch to achieve high recruitment rates. The delivery of competent larvae to a reef patch is influenced by larval behavior and by physical habitat characteristics such as substrate roughness, patch length, current speed, and water depth. We used a spatial model, the “hitting-distance” model, to identify habitat characteristics that will jointly maximize both the settlement probability and the density of recruits on an oyster reef (Crassostrea virginica). Modeled larval behaviors were based on laboratory observations and included turbulence-induced diving, turbulence-induced passive sinking, and neutral buoyancy. Profiles of currents and turbulence were based on velocity profiles measured in coastal Virginia over four different substrates: natural oyster reefs, mud, and deposited oyster and whelk shell. Settlement probabilities were higher on larger patches, whereas average settler densities were higher on smaller patches. Larvae settled most successfully and had the smallest optimal patch length when diving over rough substrates in shallow water. Water depth was the greatest source of variability, followed by larval behavior, substrate roughness, and tidal current speed. This result suggests that the best way to maximize settlement on restored reefs is to construct patches of optimal length for the water depth, whereas substrate type is less important than expected. Although physical patch characteristics are easy to measure, uncertainty about larval behavior remains an obstacle for predicting settlement patterns. The mechanistic approach presented here could be combined with a spatially explicit metapopulation model to optimize the arrangement of reef patches in an estuary or region for greater sustainability of restored habitats.  相似文献   

2.
We compared the foraging behavior of mourning doves Zenaida macroura and cottontail rabbits Sylvilagus floridanus in patches that varied in initial food abundance, surface area and substrate depth. We measured giving‐up densities (GUD), food harvest and proportion of food harvested to investigate their ability to respond to characteristics of resource patches. GUDs have been analyzed in three ways: grams of per patch, grams per unit surface area (GUDAREA), and grams per unit volume of sand (GUDVOL). Mourning doves and cottontails exhibited similar responses to resource density and sand depth. Both foragers detected and responded to variation in initial food abundance. The proportion of food harvested from a patch increased from 40.7, 43.8 to 48.3% (for the doves) and 34.9, 35.8 to 38.4% (for the rabbits) in patches of low, medium and high initial food abundance, respectively. Deeper substrates reduced the foragers’ encounter probability with food, decreased patch quality and resulted in higher GUDs (60% higher in the deepest relative to shallowest substrate) and lower harvests. A significant interaction between initial food abundance and substrate depth showed that both species were willing to dig deeper in patches with higher resource density. Patch size (surface area) had no effect on food harvest or the proportion of food harvested. Consequently, GUDAREA and GUDVOL increased in patches with a smaller surface area. Smaller patches appeared to hamper the dove's and cottontail's movement across the surface. Our results revealed that mourning doves and cottontails forage under imperfect information. Both species were able to respond to patch properties by biasing their feeding efforts toward rich and easy opportunities, however, mourning doves were more efficient at food harvesting. The interaction of patch area, volume and food abundance directly influenced food harvest. Such resource characters occur under natural situations where food varies in abundance, area of distribution, and accessibility.  相似文献   

3.
There is a growing body of evidence indicating the potential value of essential oils as control agents against a range of arthropod ectoparasites, particularly lice, mites and ticks. Toxicity has been demonstrated following immersion and physical contact with treated surfaces, as well as after exposure to the vapour of these oils; the last of these factors implies that there is a neurotoxic, rather than simply a mechanical, pathway in their mode of action. However, the volatile nature of essential oils suggests that their residual activity is likely to be short‐lived. A possible advantage of essential oils over conventional ectoparasite treatments may refer to their reported ovicidal efficacy, although it is unclear whether this results from neurotoxicity or mechanical suffocation. There are many difficulties in comparing the findings of existing studies of essential oil toxicity. One major issue is the wide variation among batches in the relative concentrations of oil constituents. A second issue concerns the fact that many experimental designs make it difficult to confirm that the effect seen is attributable to the oil; in many cases inappropriate controls mean that the effects of the excipient on mortality cannot be distinguished. Hence, it is important that an excipient‐only control is always included in these bioassays. Furthermore, in direct contact assays, when attempting to identify the toxicity pathway of the essential oil tested, it is important to include a hydrophobic control. Without this, it is impossible to distinguish simple mechanical effects from neurological or other cellular toxicity. The use of essential oils in the control of veterinary ectoparasites is an area which holds considerable potential for the future and research into their use is still at an early stage. More extensive field trials, the standardization of components, the standardization of extraction, the standardization of good experimental design, mammalian toxicology profiling and excipient development, as well as further investigation into the residual activities and shelf‐lives of these oils are all required to allow the full realization of their potential.  相似文献   

4.
《Biophysical journal》2022,121(2):336-346
Monolayer epithelial cells interact constantly with the substrate they reside on and their surrounding neighbors. As such, the properties of epithelial cells are profoundly governed by the mechanical and molecular cues that arise from both the substrate and contiguous cell neighbors. Although both cell-substrate and cell-cell interactions have been studied individually, these results are difficult to apply to native confluent epithelia, in which both jointly regulate the cell phenotype. Specifically, it remains poorly understood about the intertwined contributions from intercellular adhesion and substrate stiffness on cell morphology and gene expression, two essential microenvironment properties. Here, by adjusting the substrate modulus and altering the intercellular adhesion within confluent kidney epithelia, we found that cell-substrate and cell-cell interactions can mask each other's influence. For example, we found that epithelial cells exhibit an elongated morphological phenotype only when the substrate modulus and intercellular adhesions are both reduced, whereas their motility can be upregulated by either reduction. These results illustrate that combinatorial changes of the physical microenvironment are required to alter cell morphology and gene expression.  相似文献   

5.
Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.  相似文献   

6.
The hepatitis E virus (HEV) causes a common infectious disease that infects pigs, wild boars, deer, and humans. In most cases, humans are infected by eating raw meat. Some essential oils have been reported to exhibit antiviral activities. In this study, in order to investigate the anti-HEV properties of essential oils, the immunoreactivities of HEV antigen proteins against the relevant antibodies were analyzed after the HEV antigens underwent treatment with various essential oils. The essential oils extracted from the tea tree, which was previously reported to exhibit antiviral activity, lavender, and lemon had strongly reduced activity. We found that treatment with the essential oil prepared from Sakhalin spruce was associated with the strongest reduction in immunoreactivity of HEV antigen protein(s) among the tested substances. The main volatile constituents of Sakhalin spruce essential oil were found to be bornyl acetate (32.30 %), α-pinene (16.66 %), camphene (11.14 %), camphor (5.52 %), β-phellandrene (9.09 %), borneol (4.77 %), and limonene (4.57 %). The anti-HEV properties of the various components of the essential oils were examined: treatment with bornyl acetate, the main component of Sakhalin spruce oil, α-pinene, the main component of tea tree oil, and limonene, the main component of lemon oil, resulted in a strong reduction in HEV antigen immunoreactivity. These results indicate that each main component of the essential oils plays an important role in the reduction of the immunoreactivity of HEV antigen protein(s); they also suggest that Sakhalin spruce essential oil exhibits anti-HEV activity. In a formulation with the potential to eliminate the infectivity of HEV in foodborne infections, this essential oil can be applied as an inactivating agent for meat processing and cooking utensils, such as knives and chopping boards.  相似文献   

7.
Essential oils and their components are becoming increasingly popular as naturally occurring antimicrobial agents. In this work the chemical composition and the antimicrobial properties of Thymus essential oils and of their main components were determined. Three essential oils obtained from different species of Thymus growing wild in Sardinia and a commercial sample of Thymus capitatus oil were analysed. The essential oil components were identified by GC/MS analysis. The antimicrobial activity of the oils and components was determined against a panel of standard reference strains and multiple strains of food-derived spoilage and pathogenic bacteria, using a broth microdilution method. The GC/MS analysis showed that the major constituents of the oils were monoterpene hydrocarbons and phenolic monoterpenes, but the concentration of these compounds varied greatly among the oils examined. The results of the antimicrobial assay showed that essential oils extracted from Sardinian Thymus species have an antimicrobial activity comparable to the one observed in other thyme oils. It seems also confirmed that the antimicrobial properties of thyme essential oils are mainly related to their high phenolic content. Among the single compounds tested carvacrol and thymol turned out to be the most efficient against both reference strains and food-derived bacteria. The results of this study confirmed the possibility of using thyme essential oils or some of their components in food systems to prevent the growth of foodborne bacteria and extend the shelf-life of processed foods.  相似文献   

8.
The volatile compositions of hydrodistilled essential oils in the flower heads of Chrysanthemum indicum L. from eight populations in China were analyzed by GC/MS. A total of 169 compounds representing 88.79-99.53% of the oils were identified, and some remarkable differences were found in the constituent percentages of the eight populations. The predominant components of the essential oils were 1,8-cineole (0.62-7.34%), (+)-(1R,4R)-camphor (0.17-27.56%), caryophyllene oxide (0.54-5.8%), β-phellandrene (0.72-1.87%), (-)-(1S,2R,4S)-borneol acetate (0.33-8.46%), 2-methyl-6-(p-tolyl)hept-2-ene (0.3-8.6%), 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-yl acetate (0.17-26.48%), and hexadecanoic acid (0.72-15.97%). The chemotaxonomic value of the essential-oil compositions was discussed according to the results of cluster analysis (CA) and principal-component analysis (PCA). The eight populations were divided into five groups as different chemotypes (Groups A-E), and the scores together with the loadings revealed clearly different chemical properties of each population. In conclusion, GC/MS in combination with chemometric techniques provided a flexible and reliable method for characterizing the essential oils of different populations of C. indicum L.  相似文献   

9.
Theories of species coexistence often describe a trade‐off between colonising and competitive abilities. In sessile marine invertebrates, this trade‐off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes. We used patch size to observe this manifestation of the competition‐colonisation trade‐off over 20° of latitude. The trade‐off was more readily observed at lower latitudes and was proportional to the ‘ecological age’ of communities (i.e. the degree of resource acquisition and likelihood of species interactions). Results suggest that ecological age may mediate the prominence of stochastic or deterministic coexistence mechanisms and will depend on the rate of ecological processes.  相似文献   

10.
Stability of components of a mixture of methyl linolenoate and methyl oleinate with two lemon (Citrus limon L.) essential oils in hexane during their autooxidation in light was studied by gas chromatography. The essential oils differed by their quantitative ratio of components: the single-fold (1x) oil contained approximately 90% monoterpene hydrocarbons and 1.47% citral, whereas the proportions of hydrocarbons and citral in the tenfold (10x) oil were approximately 60 and 18.32%, respectively. The concentration and composition of essential oils influence the rates of fatty-acid oxidation and fatty-acid peroxide cleavage. The 1x lemon oil inhibited the oxidation of methyl linolenoate and methyl oleinate, whereas the 10x oil accelerated these processes. The distinctions in the resistance of the major components of lemon essential oil to oxidation, which are determined by their composition and antioxidant properties of unsaturated fatty acids, were revealed.  相似文献   

11.
Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.  相似文献   

12.
The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.  相似文献   

13.
Changes in the composition of essential oils from the seeds of laurel (Laurus nobilis L.) and fennel (Foeniculum vulgare Mill., var. dulce Thelling) and their mixture with essential oil from coriander were studied by capillary gas-liquid chromatography during storage in the dark and in light. Under these conditions, essential oil of laurel retained its composition for 12 months. Essential oil of fennel was rapidly oxidized in light. However, the rate of its oxidation in the dark was lower. The major component of essential oil of fennel, transanethol, had a lower antioxidant activity than essential oil of coriander. The mixture of essential oils from laurel and coriander possessed antioxidant properties and strongly inhibited the oxidation of components of the fennel oil.  相似文献   

14.
Inhibitory effect of essential oils against herpes simplex virus type 2.   总被引:2,自引:0,他引:2  
Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.  相似文献   

15.
Six essential oils were evaluated as to their efficiency in controlling powdery mildew (PM) of flax when they were applied as foliar sprays in an outdoor pot experiment. Onion, flax and fenugreek oils did not affect PM severity ratings – that is, they were ineffective in controlling the disease. On the other hand, black cumin, jojoba and coriander oil showed variable levels of efficiency in controlling the disease. Black cumin was moderately effective in controlling the disease because it reduced disease severity by 32.87%, while jojoba and coriander oils were highly effective as they reduced disease severity by 66.24 and 68.64%, respectively. Essential oils did not affect seed weight; however, coriander oil was a notable exception as it reduced seed weight by 55%. Straw weight was not affected by any oil. Foliar application of essential oils resulted in significant changes in the levels of protein, phenols, ascorbic acid and malondialdehyde and in activities of peroxidase and polyphenol oxidase. The lack of significant correlation between levels and activities of these biochemical components and PM severity demonstrate that these components are not involved in the suppression of PM by essential oils. Therefore, direct toxicity of essential oils to the causal pathogen Oidium lini is the most likely explanation for the disease suppression.  相似文献   

16.
The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.  相似文献   

17.
The procedure of Salvia przewalskii shoot multiplication and the ability of regenerated plants to produce essential oil is reported. The essential oil was obtained by hydrodistillation from leaves and flowering stems of field-grown plants, and their chemical composition was examined by GC, GC-MS and 1H NMR. The differences in yield as well as qualitative and quantitative composition between the oils isolated from in vitro and in vivo plants were observed. S. przewalskii essential oil was tested for its antimicrobial and cytotoxic properties. It was found that cytotoxicity against human leukemia HL-60 cells and antimicrobial activity (especially, against Staphylococcus aureus and S. epidermidis strains) of oils isolated from in vitro plants were higher than those for oils from in vivo S. przewalskii plants.  相似文献   

18.
19.
Mineral oils have been historically favoured over plant oils for insect pest control in horticultural crops because of their greater efficacy. Recently the increased pressure for environmentally sustainable pest management strategies has renewed interest in the use of plant oils and also in the reasons for differences in efficacy between plant and mineral oils. Efficacy of canola and mineral oils were compared for two modes of action: asphyxia in control of Saissetia oleae on olives and as an oviposition deterrent in control of Phyllocnistis citrella on lemons. On olives both canola and mineral oil treatments significantly reduced the number of black scale in comparison to the control but mineral oil reduced the number of black scale significantly more than canola oil. When oils were applied to lemons as a preventative spray, concentrations of canola oil above 0.5% significantly reduced the number of P. citrella mines per leaf compared to the control and there were no significant differences between any concentration above 0.5% canola oil and 0.5% mineral oil. Canola oil applied at a concentration of 0.5% was significantly less effective than mineral oil applied at the same concentration. Efficacy of canola oil was found to be lower than that of mineral oil in all experiments, but the higher efficacy of mineral oil was more pronounced in suffocation of S. oleae than in deterrence of P. citrella oviposition. Our results indicate that even though canola oil has very different molecular structures than mineral oils the resulting physical characteristics of canola oil, primarily high boiling point and viscosity, may contribute to their lower efficacy against arthropod pests. However, low phytotoxicity of canola oil indicates that the chemical structure of molecules contained in canola oil had much more influence on processes on the plant surface than the physical characteristics of the oil.  相似文献   

20.
Candida albicans is one of the most common fungal pathogens, and causes systemic and invasive infections in humans. C. albicans biofilms are composed of yeast and hyphal and pseudohyphal elements, and the transition of yeast to the hyphal stage could be a virulence factor. In this study, diverse essential oils were initially investigated for anti-biofilm activity against C. albicans strains, and cascarilla bark oil and helichrysum oil and their components α-longipinene (a major constituent of both) and linalool were found to markedly inhibit biofilm formation without affecting planktonic cell growth. Moreover, α-longipinene and linalool were found to synergistically reduce biofilm formation. Notably, treatments with cascarilla bark oil, helichrysum oil, α-longipinene, or linalool clearly inhibited hyphal formation, and this appeared to be largely responsible for their anti-biofilm effect. Furthermore, the two essential oils, α-longipinene and linalool, reduced C. albicans virulence in Caenorhabditis elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号