首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong ocean current systems characterize the Southern Ocean. The genetic structure of marine phytoplankton species is believed to depend mainly on currents. Genetic estimates of the relatedness of populations of phytoplankton species therefore should provide a proxy showing to what extent different geographic regions are interconnected by the ocean current systems. In this study, spatial and temporal patterns of genetic diversity were studied in the circumpolar prymnesiophyte Phaeocystis antarctica Karsten using seven nuclear microsatellite loci. Analyses were conducted for 86 P. antarctica isolates sampled around the Antarctic continent between 1982 and 2007. The results revealed high genetic diversity without single genotypes recurring even among isolates within a bloom or originating from the same bucket of water. Populations of P. antarctica were significantly differentiated among the oceanic regions. However, some geographically distant populations were more closely related to each other than they were to other geographically close populations. Temporal haplotype turnover within regions was also suggested by the multilocus fingerprints. Our data suggest that even within blooms of P. antarctica genetic diversity and population sizes are large but exchange between different regions can be limited. Positive and significant inbreeding coefficients hint at further regional substructure of populations, suggesting that patches, once isolated from one another, may not reconnect. These data emphasize that even for planktonic species in a marine ecosystem that is influenced by strong currents, significant breaks in gene flow may occur.  相似文献   

2.
Populations of both native higher Antarctic plants, Deschampsia antarctica and Colobanthus quitensis, increased during the last decades. However, for D. antarctica, previous population studies on the South Shetland Islands and the Antarctic Peninsula have been too sporadic, patchy, and methodologically different to allow general conclusions. Our aim was to compare sites with D. antarctica along a north–south latitudinal transect with an integral census method to assess the possible impact of climatic change on grass population dynamics. During two summer seasons (2009–2010), plant populations were censed on Fildes and Coppermine Peninsula and several localities on the west coast of the Antarctic Peninsula. Largest plant populations were found on Fildes Peninsula with vegetation cover (VC) of 44–46%. Six out of eleven stands of D. antarctica on Coppermine Peninsula were new records, with increasing plant number and VC (0.1–22%). In the Antarctic Peninsula, contrarily to our expectation, only at Forbes Point, D. antarctica VC was relatively high (ca. 2%) and a new stand of C. quitensis was found. At three previously reported sites, plants had disappeared. Our monitoring confirms that northern D. antarctica populations are expanding, but that this expansion is not continuous along the Antarctic Peninsula and inconsistent with the gradient of relative temperature increase in north–south direction. We suggest that other abiotic and biotic factors are influencing the colonization and expansion of vascular plants in this particular ecosystem.  相似文献   

3.
Floating seaweeds are important dispersal vectors in marine ecosystems. However, the relationship between benthic populations and stranded seaweeds has received little attention. After detachment, a fraction of floating specimens returns to the shore, resulting in strandings that fluctuate in space and time. It has been hypothesized that the availability of stranded seaweeds is related to their benthic abundance on adjacent coasts. Using the large fucoid Durvillaea antarctica, we tested whether stranded biomasses are higher at sites with dense adjacent benthic populations. Benthic abundance of D. antarctica along the continental coast of Chile was estimated using three approximations: (i) availability of potentially suitable habitat (PSH), (ii) categorical visual abundance estimates in the field, and (iii) abundance measurements in the intertidal zone. Higher PSH for D. antarctica was observed between 31° S–32° S and 40° S–42° S than between 33° S and 39° S. Lowest benthic biomasses were estimated for the northern latitudes (31° S–32° S). Regression models showed that the association between stranded biomass and PSH was highest when only the extent of rocky shore 10 km to the south of each beach was included, suggesting relatively short-distance dispersal and asymmetrical transport of floating kelps, which is further supported by low proportions of rafts with Lepas spp. (indicator of rafting). The results indicate that stranded biomasses are mostly subsidized by nearby benthic populations, which can partly explain the low genetic connectivity among populations in the study region. Future studies should also incorporate other local factors (e.g., winds, currents, wave-exposure) that influence stranding dynamics.  相似文献   

4.
Previous work on the genetic diversity of Phaeocystis used ribosomal DNA and internal transcribed spacer (ITS) sequence analyses to show that there is substantial inter- and intraspecific variation within the genus. First attempts to trace the biogeographical history of strains in Antarctic coastal waters were based on a comparison of ITS sequences. To gain deeper insights into the population structure and bloom dynamics of this microalga it is necessary to quantify the genetic diversity within populations of P. antarctica from different locations (i.e., each of the three major gyres in the Antarctic continental waters) and to calculate the gene flow between them. Here we describe methods to quantify genetic diversity and our preliminary results for P. antarctica in comparison to two other colonial species: P. globosa and P. pouchetii. For this study of genetic diversity, two fingerprinting techniques were used. First, amplified fragment-length polymorphisms (AFLPs) were established as a pre-screening tool to assess clone diversity and to select divergent clones prior to physiological investigations. Second, the more-powerful microsatellite markers were established to assess population structure and biogeography more accurately. Results show differences in the AFLP patterns between isolates of P. antarctica from different regions, and that a wide variety of microsatellite motifs could be obtained from the three Phaeocystis species.  相似文献   

5.
This work is a quantitative analysis of the population of breeding pairs of Pygoscelis adeliae and Pygoscelis antarctica, which use Penguin Island as a breeding area. There was a decrease in the populations of P. adeliae and P. antarctica by 75 and 66%, respectively, from the breeding season of 1979/1980 to 2003/2004. A mixed breeding colony of both species was also documented, according to published data which has existed since 1979/1980. The P. antarctica has an advantage over P. adeliae in this mixed breeding situation, where the breeding pairs of the former increased by 127%, indicating an interspecies competition for nesting ground.  相似文献   

6.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

7.
Deschampsia antarctica Desv. is the only gramineae capable of colonizing the Antarctic due to the region’s extreme climate and soil environment. In the present research, bacteria colonizing the rhizospheric soil of D. antarctica were isolated and characterized. The soil studies showed that D. antarctica possesses a wide spectrum of psychrotolerant bacteria with extensive and varied antibiotic resistance, as well as heavy metal tolerance. The bacterial strains isolated from the rhizosphere of D. antarctica also produced a diverse pattern of enzymes. Based on the strain identification with partial characterization of the 16S rRNA gene, the majority of the isolates correspond to different Pseudomonas species, and species of the genus Flavobacterium sp. and Arthrobacter sp. The isolated strains collected from this research constitute a unique collection for future, more detailed taxonomic analysis and physiological characterization, contributing to the search for potential biotechnological uses. These findings and others have great potential for developing new biotechnological products from Antarctic microorganisms.  相似文献   

8.
Anthropogenic inputs of CO2 are altering ocean chemistry and may alter the role of marine calcifiers in ocean ecosystems. Laboratory research and ocean models suggest calcifiers in polar waters are especially at risk, particularly pteropods: pelagic aragonite-shelled molluscs. However, baseline data for natural populations of pteropods are limited, especially for polar and sub-polar waters. In order to establish baseline data on diversity, preservation state and shell flux of in situ populations of Sub-Antarctic Southern Ocean pteropods, we deployed sediment traps above (1,000 m) and below (2,000 m) the aragonite saturation horizon (ASH) (currently at 1,200 m) from 1997 to 2006 at 47°S, 142°E. We identified seven pteropod taxa. We applied a shell opacity index to each shell collected and found 50% of shells collected above the ASH to be in pristine condition but only 3% of the shells collected below the ASH showed such a high degree of preservation. We estimated pteropod shell mass fluxes for the region (0.17–4.99 mg m−2 day−1), and we identified significant reductions in shell flux for Limacina helicina antarctica forma rangi and Clio recurva to the trap series above the ASH and for Limacina helicina antarctica forma rangi and Limacina helicina antarctica forma antarctica to the trap series below the ASH over the interval 1997–2006. Our data establish a temporal and vertical snapshot of the current Sub-Antarctic pelagic pteropod community and provide a baseline against which to monitor Southern Ocean pteropods responses, if any, to changing ocean conditions projected for the region in the coming decades.  相似文献   

9.
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 °S, 36°W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle.  相似文献   

10.
Deschampsia antarctica Desv. can be found in diverse Antarctic habitats which may vary considerably in terms of environmental conditions and soil properties. As a result, the species is characterized by wide ecotypic variation in terms of both morphological and anatomical traits. The species is a unique example of an organism that can successfully colonize inhospitable regions due to its phenomenal ability to adapt to both the local mosaic of microhabitats and to general climatic fluctuations. For this reason, D. antarctica has been widely investigated in studies analyzing morphophysiological and biochemical responses to various abiotic stresses (frost, drought, salinity, increased UV radiation). However, there is little evidence to indicate whether the observed polymorphism is accompanied by the corresponding genetic variation. In the present study, retrotransposon‐based iPBS markers were used to trace the genetic variation of D. antarctica collected in nine sites of the Arctowski oasis on King George Island (Western Antarctic). The genotyping of 165 individuals from nine populations with seven iPBS primers revealed 125 amplification products, 15 of which (12%) were polymorphic, with an average of 5.6% polymorphic fragments per population. Only one of the polymorphic fragments, observed in population 6, was represented as a private band. The analyzed specimens were characterized by low genetic diversity (uHe = 0.021, I = 0.030) and high population differentiation (FST = 0.4874). An analysis of Fu's FS statistics and mismatch distribution in most populations (excluding population 2, 6 and 9) revealed demographic/spatial expansion, whereas significant traces of reduction in effective population size were found in three populations (1, 3 and 5). The iPBS markers revealed genetic polymorphism of D. antarctica, which could be attributed to the mobilization of random transposable elements, unique features of reproductive biology, and/or geographic location of the examined populations.  相似文献   

11.
Deschampsia antarctica E. Desv. is the only monocot in the Antarctic floristic zone. We evaluated the phylogenetic relationships of Deschampsia antarctica to other grasses using parsimony as the optimality criterion. Five different sets of gap, transversion and transitions costs were explored to analyze the effect of parameter choice on the phylogenetic results. Both internal transcribed spacers (ITS1 and ITS2) and the 5.8S subunit of nuclear ribosomal DNA were included in the analysis. A total of 43 species were analyzed including seven species of Deschampsia. Deschampsia antarctica forms a well supported group with five species of Deschampsia. Deschampsia does not appear monophyletic as D. flexuosa (L.) Trin. is not included in this clade. The clade to which D. antarctica belongs is sister to some Aveneae in all analyses. This study is the first contribution that evaluates the phylogenetic position of D. antarctica in relation to other species of Deschampsia.  相似文献   

12.
ABSTRACT.
  • 1 An account of the life-history with emphasis on phenology and number of instars is presented for Belgica antarctica Jacobs, the southernmost holometabolous insect.
  • 2 Contrary to earlier reports, Belgica has four instars, in common with most other chironomids. Mean head capsule lengths varied between different populations but no overlap was found between discrete size classes of successive instars.
  • 3 Belgica overwinters in all four instars.
  • 4 Relative frequency of different instars from samples taken through the season indicates that a 2-year life-span is the commonest pattern.
  • 5 Emergence of adults is relatively synchronous. Belgica exhibits protandry, which may be established at the time of pupation.
  相似文献   

13.
Two species of chironomid midges are currently described in the genus Belgica Jacobs, 1900. Belgica antarctica Jacobs, 1900 is endemic to parts of the maritime Antarctic, and Belgica albipes (Séguy, 1965) is endemic to Îles Crozet, a sub‐Antarctic archipelago in the southern Indian Ocean. The relationships between these species, and their closest known relative (Eretmoptera murphyi Schaeffer, 1914, endemic to sub‐Antarctic South Georgia), were examined by sequencing DNA fragments for domains 1 and 3–5 of 28S ribosomal DNA and the mitochondrial gene cytochrome c oxidase 1 (cox1). The resulting molecular relationships between the three species were unclear, although their position within the subfamily Orthocladiinae of the Chironomidae, as generated by classical taxonomy, was confirmed. Our data reinforce earlier doubts, based on classical morphological approaches, that the generic placement of E. murphyi may be incorrect. Further analyses may indeed confirm that the species represents a third member of the genus Belgica. Genetic distance analysis, limited to the barcode region of cox1, indicated high differentiation between the two populations of B. albipes sampled (one obtained from the type location), suggesting the likely presence of cryptic species within this taxon, and that the taxonomic status of this species should be revised. Analysis of cox1 sequences in B. antarctica highlighted a strong genetic structure between populations obtained from 12 locations along the Antarctic Peninsula and the South Shetland Islands archipelago, with a number of distinctive mtDNA lineages inhabiting geographically distinct areas. In particular, we found four different haplogroups constituting geographically close but genetically distinct populations, a pattern likely to have been encouraged by the brachyptery of the members of this genus. We suggest that the different genetic patterns shown by each haplogroup have probably been determined by historical dispersal and colonization events during the Pleistocene, and are consistent with their survival in refuges in situ during successive glacial maxima over this period. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 258–274.  相似文献   

14.
Walker, D. I. and Cambridge, M. L. 1994. An experimental assessment of the temperature responses of two sympatric seagrasses, Amphibolis antarctica and Amphibolis griffithii, in relation to their biogeography.Seedlings of the viviparous seagrasses, Amphibolis antarctica (Labill.) Sonder & Aschers. and Amphibolis griffithii (Black) den Hartog, were grown in seawater cultures at temperatures of 10–30 °C. This temperature range exceeded the range of temperatures occurring in habitats where Amphibolis grows.All seedlings of both species survived at 15 °C, and all A. antarctica at 10 and 20 °C. There was some mortality at 25 °C, but more in A. griffithii than in A. antarctica. All seedlings showed marked senescence at 30 °C within 2 weeks, and all seedlings of both species were dead at this temperature in 6 weeks. Leaf production rates were different at different temperatures for each species, but were high across the 15–25 °C temperature range for both species. Given the time of release of seedlings from parent plants (winter), these results are consistent with the observed distribution of adult plants, and so the more restricted range of A. griffithii can be explained partially by its' response to temperature in culture. These results do not explain the absence of both Amphibolis species from the east coast of Australia, which may be a consequence of habitat availability.  相似文献   

15.
Nothofagus antarctica is the most representative species of the native mixed forest occupying ecotone areas between forests and steppe in NW Patagonia, South-America. In this type of environment, vulnerability to climate change is particularly enhanced. Predictions of future climatic conditions for this region indicate an increment of atmospheric temperature and also, a high variability of rain events, threatening forest persistence and productivity. In this framework, management strategies are crucial to guarantee sustainability of native vegetation systems. The objective of this study was to study the effect of tree density on the ecophysiological limitations of water use of N. antarctica, as a proxy to its productivity, during a drought period. Compared with the unthinned forest, the thinned forest showed higher soil water availability, higher sapflow density (Js) and canopy conductance (Gc) values, similar aerodynamic conductance (Ga) and a low degree of coupling to vapor pressure deficit. Ecophysiological results demonstrated a high limitation over gas exchange of individual N. antarctica trees imposed by the resistance in the hydraulic soil-to-leaf pathway in the unthinned-natural condition. Surprisingly, our results suggest structural limitations in the unthinned stand which reduce the ability of N. antarctica trees to take advantage of wet seasons, at least in the short term. Thinning could decrease the susceptibility of N. antarctica-based systems to drought stress, by increasing resource availability to the remaining trees, thus contributing to enhance the persistence of this species under climate change conditions.  相似文献   

16.
Leaf respiration and photosynthesis will respond differently to an increase in temperature during night, which can be more relevant in sensitive ecosystems such as Antarctica. We postulate that the plant species able to colonize the Antarctic Peninsula – Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. – are able to acclimate their foliar respiration and to maintain photosynthesis under nocturnal warming to sustain a positive foliar carbon balance. We conducted a laboratory experiment to evaluate the effect of time of day (day and night) and nocturnal warming on dark respiration. Short (E0 and Q10) and long‐term acclimation of respiration, leaf carbohydrates, photosynthesis (Asat) and foliar carbon balance (R/A) were evaluated. The results suggest that the two species have differential thermal acclimation respiration, where D. antarctica showed more thermosensitivity to short‐term changes in temperature than C. quitensis. Experimental nocturnal warming affected respiration at daytime differentially between the two species, with a significant increase of R10 and Asat in D. antarctica, while no changes on respiration were observed in C. quitensis. Long thermal treatments of the plants indicated that nocturnal but not diurnal respiration could acclimate in both species, and to a greater extent in C. quitensis. Non‐structural carbohydrates were related with respiration in C. quitensis but not in D. antarctica, suggesting that respiration in the former species is likely controlled by total soluble sugars and starch during day and night, respectively. Finally, foliar carbon balance was differentially improved under warming conditions in Antarctic plants by different mechanisms, with C. quitensis deploying respiratory acclimation, while D. antarctica increased its Asat.  相似文献   

17.
Despite continuous efforts since the 1950s and more recent advances in culturing flagellates and nonflagellate cells of the prymnesiophyte Phaeocystis, a number of different life‐cycle models exist today that appear to apply for P. globosa Scherff. and P. antarctica G. Karst., both spherical colony formers. In one such model, this life cycle consists of three different flagellates and one nonmotile cell stage that is embedded in carbohydrate matrix‐forming colonies of different sizes and forms. Recently, noncolonial aggregates of diploid nonmotile cells attached to surfaces of diatoms were put forward as a new stage in the sexual life cycle of P. antarctica. However, it can be discussed that these “attached aggregates” (AAs) are an intermediate between motile diploid flagellates, with their well‐known tendency to adhere to surfaces, and the young spherical colony with its diploid nonmotile cells, which in nature is commonly found attached to diatoms. A life‐cycle model pertaining to both P. globosa and P. antarctica is presented.  相似文献   

18.
The chironomid midges Belgica antarctica, Eretmoptera murphyi (subfamily Orthocladiinae) and Parochlus steinenii (subfamily Podonominae), are the only Diptera species currently found in Antarctica. The relationships between these species and a range of further taxa of Chironomidae were examined by sequencing domains 1 and 3–5 of 28S ribosomal RNA. The resulting molecular relationships between B. antarctica and E. murphyi, within Orthocladiinae, were highly supported by validation analyses, confirming their position within Chironomidae, as generated by classical taxonomy. Within Podonominae, P. steinenii from the Maritime Antarctic was more closely related to material from sub-Antarctic South Georgia than to material from Patagonia. Taking advantage of the availability of a molecular substitution rate calculated for this gene in Diptera, a dating of divergence between our study taxa was tentatively established. The divergence dates obtained were 49 million years (Myr), between B. antarctica and E. murphyi, and 68.5 Myr between these species and the closest Orthocladiinae taxon tested from Patagonia, suggesting that B. antarctica and E. murphyi were representatives of an ancient lineage. As both are endemic to their respective tectonic microplates, their contemporary distribution is, therefore, likely to have been shaped by vicariance rather than dispersal.  相似文献   

19.
20.
Different regional patterns of glaciation are expected to have brought about a differential effect on the present genetic structure of natural tree populations in the temperate regions. The aim of the present study is to test this hypothesis in Nothofagus antarctica, a key tree species of the temperate forests of southern South America. An almost continuous ice layer characterized the region of the Andes south of 41°S, while towards northern latitudes the pattern was more fragmented. Therefore, a higher chance for the location of larger or more numerous glacial refuges in the north of the Argentinean range, leads us to predict a higher genetic diversity in this region. Twelve natural populations of N. antarctica were sampled along the northern half of its Argentinean range, including six above 41°S and six below that latitude. Sampled populations were genetically characterized through cpDNA and isozyme gene markers. Both groups of populations were compared by means of several diversity and differentiation parameters. A genetic structure analysis was conducted with isozyme data through clustering and Bayesian approaches. Based on three polymorphic chloroplast regions, only two haplotypes were distinguished, one corresponding to the nine northernmost sampled populations and the other to the two southernmost ones. Only the population located between those two groups resulted polymorphic. AMOVA analyses also revealed a latitudinal genetic structure for the populations surveyed, and higher levels of genetic variation were recognized in the northern populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号