首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of uridine kinase. Evidence for a regulatory site   总被引:2,自引:0,他引:2  
Uridine kinase from mouse Ehrlich ascites tumor cells may exist at 4 degrees C in multiple aggregation states that only slowly equilibrate with one another. Increasing the temperature leads to dissociation, and the appearance of a single predominant species: at 22 degrees C the enzyme exists as a tetramer. There is also a break in the dependence of enzyme activity on temperature as measured in an Arrhenius plot. The feedback inhibitors CTP and UTP cause the enzyme to dissociate to the monomer, whereas the substrate ATP reverses this process. Kinetic studies show that the monomer has little or no activity. Studies of the reaction mechanism show that binding of substrates is ordered, leading to a ternary complex, and release of products is ordered: uridine is the first substrate bound, ADP the first product released. Except for the inhibitors UTP and CTP, all other nucleoside triphosphates, whether purine or pyrimidine, or containing ribose or deoxyribose, act as phosphate donor. Especially interesting are the opposite effects of CTP and dCTP on uridine kinase: unlike CTP, dCTP does not dissociate the enzyme and is competent as a phosphate donor. We propose that the various effects of different ligands are best explained by the existence of a regulatory site (with more stringent specificity than the catalytic site) that controls dissociation of uridine kinase to the inactive monomer.  相似文献   

2.
CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme that controls phosphatidylcholine synthesis, is regulated by reversible interactions with membranes containing anionic lipids. Previous work demonstrated that CCT is a homodimer. In this work we show that the structure of the dimer interface is altered upon encountering membranes that activate CCT. Chemical cross-linking reactions were established which captured intradimeric interactions but not random CCT dimer collisions. The efficiency of capturing covalent cross-links with four different reagents was diminished markedly upon presentation of activating anionic lipid vesicles but not zwitterionic vesicles. Experiments were conducted to show that the anionic vesicles did not interfere with the chemistry of the cross-linking reactions and did not sequester available cysteine sites on CCT for reaction with the cysteine-directed cross-linking reagent. Thus, the loss of cross-linking efficiency suggested that contact sites at the dimer interface had increased distance or reduced flexibility upon binding of CCT to membranes. The regions of the enzyme involved in dimerization were mapped using three approaches: 1) limited proteolysis followed by cross-linking of fragments, 2) yeast two-hybrid analysis of interactions between select domains, and 3) disulfide bonding potential of CCTs with individual cysteine to serine substitutions for the seven native cysteines. We found that the N-terminal domain (amino acids 1-72) is an important participant in forming the dimer interface, in addition to the catalytic domain (amino acids 73-236). We mapped the intersubunit disulfide bond to the cystine 37 pair in domain N and showed that this disulfide is sensitive to anionic vesicles, implicating this specific region in the membrane-sensitive dimer interface.  相似文献   

3.
4.
5.
Crosslinking of subunits of the high molecular weight oligomer of bovine heart mitochondrial creatine kinase (CKm) by dimethyl suberimidate and subsequent electrophoresis in the presence of sodium dodecyl sulfate gives eight protein bands. An increase in the time course of the enzyme crosslinking reaction results in the protein accumulation in the high molecular weight bands. Evidence has been obtained suggesting that crosslinking involves only the intraoligomeric contact areas. It is concluded that bovine heart CKm is an octamer. Crosslinking of intersubunit contacts in the octameric form of the enzyme by various diimidates has been carried out. The data obtained suggest that within the octamer the CKm subunits have a quasispherical rather than planar arrangement. This finding is supported by electron microscopy data.  相似文献   

6.
W Wharton  W J Pledger 《In vitro》1981,17(8):706-712
After the stimulation of quiescent density-inhibited BALB/c-3T3 cells with fresh bovine calf serum, uridine kinase activity measured in cellular extracts increased between hours 3 and 6 of incubation and remained elevated through 12 h after stimulation. The addition of either partially purified platelet-derived growth factor (PDGF) or platelet-poor plasma (PPP) also caused increased uridine kinase activity by 6 h, but the increased activity was not maintained and the activity returned to the prestimulated level by 12 h. However, when PDGF and PPP were added in combination an increased level of uridine kinase activity was maintained in a manner similar to that seen after the addition of serum. The components of PPP eluted in the void volume from Sephadex G-50 chromatography did not induce uridine kinase activity when present alone, although they did act synergistically with PDGF to allow the maintenance of elevated levels or uridine kinase activity over the period from 6 to 12 h after stimulation. Thymidine kinase activity was not induced by the addition of either PDGF or PPP alone, although either serum or the combination of PDGF and PPP did produce and induction of thymidine kinase activity in late G1.  相似文献   

7.
Summary After the stimulation of quiescent density-inhibited BALB/c-3T3 cells with fresh bovine calf serum, uridine kinase activity measured in cellular extracts increased between hours 3 and 6 of incubation and remained elevated through 12 h after stimulation. The addition of either partially purified platelet-derived growth factor (PDGF) or platelet-poor plasma (PPP) also caused increased uridine kinase activity by 6 h, but the increased activity was not maintained and the activity returned to the prestimulated level by 12 h. However, when PDGF and PPP were added in combination an increased level of uridine kinase activity was maintained in a manner similar to that seen after the addition of serum. The components of PPP eluted in the void volume from Sephadex G-50 chromatography did not induce uridine kinase activity when present alone, although they did act synergistically with PDGF to allow the maintenance of elevated levels of uridine kinase activity over the period from 6 to 12 h after stimulation. Thymidine kinase activity was not induced by the addition of either PDGF or PPP alone, although either serum or the combination of PDGF and PPP did produce an induction of thymidine kinase activity in late G1. This work was supported by NCI Grants CA24913 and CA16084. W. W. was supported by NIH Postdoctoral Fellowship AM 1477. W. J. P. was supported by JFRA32 from the American Cancer Society. A preliminary report of this research was given at the Eighth International Cell Cycle Conference held at Research Triangle Park, NC, May 15–16, 1980.  相似文献   

8.
Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.  相似文献   

9.
Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-L-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.  相似文献   

10.
11.
12.
13.
Phosphatidylcholine (PC) synthesis in animal cells is generally controlled by cytidine 5'-triphosphate (CTP):phosphocholine cytidylyltransferase (CCT). This enzyme is amphitropic, that is, it can interconvert between a soluble inactive form and a membrane-bound active form. The membrane-binding domain of CCT is a long amphipathic alpha helix that responds to changes in the physical properties of PC-deficient membranes. Binding of this domain to membranes activates CCT by relieving an inhibitory constraint in the catalytic domain. This leads to stimulation of PC synthesis and maintenance of membrane PC content. Surprisingly, the major isoform, CCT alpha, is localized in the nucleus of many cells. Recently, a new level of its regulation has emerged with the discovery that signals that stimulate PC synthesis recruit CCT alpha from an inactive nuclear reservoir to a functional site on the endoplasmic reticulum.  相似文献   

14.
15.
Uridine kinase (ATP: uridine 5'-phosphotransferase, EC 2.7.1.48) has been partially purified from ungerminated hybrid corn seed. It is associated with a soluble high molecular weight fraction from which it apparently cannot be dissociated without loss of activity. The stability of the enzyme is enhanced by the addition of dithiothreitol, glycerol and nucleotide substrate. The nucleoside specificity of the enzyme is limited to nucleosides containing pyrimidine and ribose moieties, such as uridine and cytidine. High concentrations of nucleosides cause substrate inhibition, however. The Km values for uridine and cytidine are 53 muM and 125 muM, respectively, and under subsaturating conditions uridine is phosphorylated about five times faster than cytidine. The reaction follows an ordered Bi Bi kinetic pattern, with ATP and ADP in competition for the free form of the enzyme. Purine, but not pyrimidine, nucleoside triphosphates serve as phosphate donors without regard to the sugar moiety. However, all of these triphosphates appear to compete for the same site on the enzyme. (Km ATP equals 590 muM, Km (app) GTP equals 61 muM, and CTP and UTP are linear competitive inhibitors against ATP, with Ki values of 60 muM and 240 muM, respectively.) Therefore, end product control of uridine kinase apparently does not involve allosteric sites, but instead is envisioned as simple competition between relatively effective or ineffective phosphate donors for a position on the enzyme.  相似文献   

16.
Pyruvate kinase (EC 2.7.1.40) of Neurospora, a tetramer composed of apparently identical subunits, has been shown to be a dimer of dimers by interprotomeric cross-linking experiments in which bifunctional reagents were used. An analysis of the polyacrylamide gel profiles of the enzyme after cross-linking with glutaraldehyde, dimethyl suberimidate, and dimethyl adipimidate shows that the extent of intersubunit cross-linking is influenced markedly by the ligand bound to the enzyme. Bifunctional cross-linking reagents with a shorter distance between the two functional groups form cross-links effectively in the unliganded enzyme. In the FDP-pyruvate kinase complex, cross-linking was observed over longer distances compared with the unliganded enzyme. It is demonstrated that covalent cross-linkers cah be used as sensitive indicators of conformational changes induced in pyruvate kinase by substrates and allosteric ligands.  相似文献   

17.
R B Cornell 《Biochemistry》1991,30(24):5873-5880
The activity of phosphocholine cytidylyltransferase (CT), the regulatory enzyme in phosphatidylcholine synthesis, is dependent on lipids. The enzyme, obtained from rat liver cytosol, was purified in the presence of Triton X-100 [Weinhold et al. (1986) J. Biol. Chem. 261, 5104]. The ability of lipids to activate CT when added as Triton mixed micelles was limited to anionic lipids. The relative effectiveness of the lipids tested suggested a dependence on the negative surface charge density of the micelles. The mole percent lipid in the Triton mixed micelle required for activation decreased as the net charge of the lipid varied from 0 to -2. Evidence for the physical association of CT with micelles and vesicles containing phosphatidylglycerol was obtained by gel filtration. The activation by micelles containing PG was influenced by the ionic strength of the medium, with a higher surface charge density required for activation at higher ionic strength. The micelle surface potential required for full activation of CT was calculated to be -43 mV. A specificity toward the structure of the polar group of the acidic lipids was not apparent. CT was activated by neutral lipids such as diacylglycerol or oleyl alcohol when included in an egg PC membrane, but the activities were reduced by dilution with as little as 10 mol % Triton. Thus Triton mixed micelles are not suitable for studying the activation of CT by these neutral lipid activators. We conclude that one way that lipid composition can control CT-membrane binding and activity is by changing the surface potential of the membrane. Other distinct mechanisms involved in the activation by neutral lipids are discussed.  相似文献   

18.
Skeletal-muscle phosphorylase kinase is a hexadecameric oligomer composed of equivalent amounts of four different subunits, (alpha beta gamma delta)4. The delta-subunit, which is calmodulin, functions as an integral subunit of the oligomer, and the gamma-subunit is catalytic. To learn more about intersubunit contacts within the hexadecamer and about the roles of individual subunits, we induced partial dissociation of the holoenzyme with low concentrations of urea. In the absence of Ca2+ the quaternary structure of phosphorylase kinase is very sensitive to urea over a narrow concentration range. Gel-filtration chromatography in the presence of progressively increasing concentrations of urea indicates that between 1.15 M- and 1.35 M-urea the delta-subunit dissociates, allowing extensive formation of complexes larger than the native enzyme that contain equivalent amounts of alpha-, beta- and gamma-subunits. As the urea concentration is increased to 2 M and 3 M, nearly all of the enzyme aggregates to the heavy species devoid of delta-subunit. Addition of Ca2+, which is known to block dissociation of the delta-subunit [Shenolikar, Cohen, Cohen, Nairn & Perry (1979) Eur. J. Biochem. 100, 329-337], also blocks aggregation of the enzyme induced by the low concentrations of urea. These results suggest that in native phosphorylase kinase the delta-subunit, in addition to activating the catalytic subunit and conferring upon it Ca2(+)-sensitivity, may also serve a structural role in preventing aggregation of the alpha-, beta- and gamma-subunits, thus limiting to four the number of alpha beta gamma delta protomers that associate under standard conditions. In gel-filtration chromatography with urea a protein peak containing equivalent amounts of alpha- and gamma-subunits is also observed, as is a peak containing only beta-subunits. Increasing concentrations of urea have a biphasic effect on the activity of the holoenzyme, being stimulatory up to 1 M and then inhibitory. The concentration-dependence of urea in the inhibitory phase parallels its ability to induce dissociation of the delta-subunit.  相似文献   

19.
Regulation of Smad signaling by protein kinase C.   总被引:9,自引:0,他引:9  
  相似文献   

20.
Regulation of Cl- channels by multifunctional CaM kinase.   总被引:10,自引:0,他引:10  
cAMP kinase has been shown to mediate the cAMP pathway for regulation of Cl- channels in lymphocytes, but the mediator of an alternative, Ca2+ pathway has not been identified. We show here that Ca2+ ionophore activates Cl- currents in cell-attached and whole-cell patch-clamp recordings of Jurkat T lymphocytes, but this activation is not direct. The effect of Ca2+ ionophore on whole-cell Cl- currents is inhibited by a specific peptide inhibitor of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Furthermore, Cl- channels are activated in excised patches by purified CaM kinase in a fashion that mimics the effect of Ca2+ ionophore in cell-attached recordings. These results suggest that CaM kinase mediates the Ca2+ pathway of Cl- channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号