首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe cloning of toxic genes in E. coli requires strict regulation of the target genes' leaky expression. Many methods facilitating successful gene cloning of toxic genes are commonly exploited, but the applicability is severely limited.MethodsA CRISPR/dCas9-assisted system was used to clone toxic genes in E. coli. The plasmid-based and genome-integrated systems were designed in this study. And the green fluorescent protein characterization system was used to test the repression efficiency of the two systems.ResultsWe optimized the plasmid-based CRISPR/dCas9-assisted repression system via testing different sgRNAs targeting the Ptrc promoter and achieved inhibition efficiency up to 64.8%. The genome-integrated system represented 35.9% decreased GFP expression and was successfully employed to cloned four toxic genes from Corynebacterium glutamicum in E. coli.ConclusionsUsing this method, we successfully cloned four C. glutamicum-derived toxic genes that had been failed to clone in conventional ways. The CRISPR/dCas9-assisted gene cloning method was a promising tool to facilitate precise gene cloning of different origins in E. coli.General significanceThis system will be useful for cloning toxic genes from different origins in E. coli, and can accelerate the related research of gene characterization and heterologous expression in the metagenomic era.  相似文献   

2.
3.
Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the PluxI promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of “hidden interactions” on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.  相似文献   

4.
5.
6.
SOS box of the recA promoter, PVRecA from Vibrio natriegens was characterized, cloned and expressed in a probiotic strain E. coli Nissle 1917. This promoter was then rationally engineered according to predicted interactions between LexA repressor and PVRecA. The redesigned PVRecA-AT promoter showed a sensitive and robust response to DNA damage induced by UV and genotoxic compounds. Rational design of PVRecA coupled to an amplification gene circuit increased circuit output amplitude 4.3-fold in response to a DNA damaging compound mitomycin C. A TetR-based negative feedback loop was added to the PVRecA-AT amplifier to achieve a robust SOS system, resistant to environmental fluctuations in parameters including pH, temperature, oxygen and nutrient conditions. We found that E. coli Nissle 1917 with optimized PVRecA-AT adapted to UV exposure and increased SOS response 128-fold over 40 h cultivation in turbidostat mini-reactor. We also showed the potential of this PVRecA-AT system as an optogenetic actuator, which can be controlled spatially through UV radiation. We demonstrated that the optimized SOS responding gene circuits were able to detect carcinogenic biomarker molecules with clinically relevant concentrations. The ultrasensitive SOS gene circuits in probiotic E. coli Nissle 1917 would be potentially useful for bacterial diagnosis.  相似文献   

7.
8.
9.
Quorum sensing (QS) regulates many natural phenotypes (e.q. virulence, biofilm formation, antibiotic resistance), and its components, when incorporated into synthetic genetic circuits, enable user-directed phenotypes. We created a library of Escherichia coli lsr operon promoters using error-prone PCR (ePCR) and selected for promoters that provided E. coli with higher tetracycline resistance over the native promoter when placed upstream of the tet(C) gene. Among the fourteen clones identified, we found several mutations in the binding sites of QS repressor, LsrR. Using site-directed mutagenesis we restored all p-lsrR-box sites to the native sequence in order to maintain LsrR repression of the promoter, preserving the other mutations for analysis. Two promoter variants, EP01rec and EP14rec, were discovered exhibiting enhanced protein expression. In turn, these variants retained their ability to exhibit the LsrR-mediated QS switching activity. Their sequences suggest regulatory linkage between CytR (CRP repressor) and LsrR. These promoters improve upon the native system and exhibit advantages over synthetic QS promoters previously reported. Incorporation of these promoters will facilitate future applications of QS-regulation in synthetic biology and metabolic engineering.  相似文献   

10.
11.
12.
Stable-isotope probing and metagenomics were applied to study samples taken from laboratory-scale slow sand filters 0.5, 1, 2, 3 and 4 h after challenging with 13C-labelled Escherichia coli to determine the mechanisms and organisms responsible for coliform removal. Before spiking, the filters had been continuously operated for 7 weeks using water from the River Kelvin, Glasgow as their influent source. Direct counts and quantitative PCR assays revealed a clear predator–prey response between protozoa and E. coli. The importance of top-down trophic-interactions was confirmed by metagenomic analysis, identifying several protozoan and viral species connected to E. coli attrition, with protozoan grazing responsible for the majority of the removal. In addition to top-down mechanisms, indirect mechanisms, such as algal reactive oxygen species-induced lysis, and mutualistic interactions between algae and fungi, were also associated with coliform removal. The findings significantly further our understanding of the processes and trophic interactions underpinning E. coli removal. This study provides an example for similar studies, and the opportunity to better understand, manage and enhance E. coli removal by allowing the creation of more complex trophic interaction models.  相似文献   

13.
14.
Engineered gene switches and circuits that can sense various biochemical and physical signals, perform computation, and produce predictable outputs are expected to greatly advance our ability to program complex cellular behaviors. However, rational design of gene switches and circuits that function in living cells is challenging due to the complex intracellular milieu. Consequently, most successful designs of gene switches and circuits have relied, to some extent, on high-throughput screening and/or selection from combinatorial libraries of gene switch and circuit variants. In this study, we describe a generic and efficient platform for selection and screening of gene switches and circuits in Escherichia coli from large libraries. The single-gene dual selection marker tetA was translationally fused to green fluorescent protein (gfpuv) via a flexible peptide linker and used as a dual selection and screening marker for laboratory evolution of gene switches. Single-cycle (sequential positive and negative selections) enrichment efficiencies of >7000 were observed in mock selections of model libraries containing functional riboswitches in liquid culture. The technique was applied to optimize various parameters affecting the selection outcome, and to isolate novel thiamine pyrophosphate riboswitches from a complex library. Artificial riboswitches with excellent characteristics were isolated that exhibit up to 58-fold activation as measured by fluorescent reporter gene assay.  相似文献   

15.
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.  相似文献   

16.
Specific interactions between ribosome recycling factor (RRF) and elongation factor-G (EFG) mediate disassembly of post-termination ribosomal complexes for new rounds of initiation. The interactions between RRF and EFG are also important in peptidyl-tRNA release from stalled pre-termination complexes. Unlike the post-termination complexes (harboring deacylated tRNA), the pre-termination complexes (harboring peptidyl-tRNA) are not recycled by RRF and EFG in vitro, suggesting participation of additional factor(s) in the process. Using a combination of biochemical and genetic approaches, we show that, (i) Inclusion of IF3 with RRF and EFG results in recycling of the pre-termination complexes; (ii) IF3 overexpression in Escherichia coli LJ14 rescues its temperature sensitive phenotype for RRF; (iii) Transduction of infC135 (which encodes a functionally compromised IF3) in E.coli LJ14 generates a ‘synthetic severe’ phenotype; (iv) The infC135 and frr1 (containing an insertion in the RRF gene promoter) alleles synergistically rescue a temperature sensitive mutation in peptidyl-tRNA hydrolase in E.coli; and (v) IF3 facilitates ribosome recycling by Thermus thermophilus RRF and E.coli EFG in vivo and in vitro. These lines of evidence clearly demonstrate the physiological importance of IF3 in the overall mechanism of ribosome recycling in E.coli.  相似文献   

17.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

18.
E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.  相似文献   

19.
20.
The field of synthetic biology has produced genetic circuits capable of emulating functional paradigms seen in digital electronic circuits. Examples are bistable switches, oscillators, and logic gates. The present work combines detailed mechanistic-kinetic models and stochastic simulation techniques as well as the techniques of in vivo molecular biology to study the potential of a synthetic, single promoter AND gate. This device is composed of elements of the tet, lac, and λ-phage promoters and is responsive to the commonly used inducers IPTG and aTc, producing GFP as an output signal. The quantitative behavior of the AND gate phenotype is studied both in numero and in vivo as a function of promoter topology. The model is constructed from kinetic data obtained from the literature and yields clearly defined ON/OFF logical behavior at realistic inducer concentrations. These behaviors are matched with observed in vivo data obtained through fluorescence-activated cell sorting. The effect of incomplete repression by weaker LacI repressor is also investigated and quantified. The simulation results, coupled with in vivo data, not only identify important design degrees of freedom, but also provide parameters that can be used to guide future synthetic designs using these common regulatory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号