首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein engineering is commonly used to improve the robustness of enzymes for activity and stability at high temperatures. In this study, we identified four residues expected to affect the thermostability of Streptomyces sp. strain S9 xylanase XynAS9 through multiple-sequence analysis (MSA) and molecular dynamic simulations (MDS). Site-directed mutagenesis was employed to construct five mutants by replacing these residues with proline or glutamic acid (V81P, G82E, V81P/G82E, D185P/S186E, and V81P/G82E/D185P/S186E), and the mutant and wild-type enzymes were expressed in Pichia pastoris. Compared to the wild-type XynAS9, all five mutant enzymes showed improved thermal properties. The activity and stability assays, including circular dichroism and differential scanning calorimetry, showed that the mutations at positions 81 and 82 increased the thermal performance more than the mutations at positions 185 and 186. The mutants with combined substitutions (V81P/G82E and V81P/G82E/D185P/S186E) showed the most pronounced shifts in temperature optima, about 17°C upward, and their half-lives for thermal inactivation at 70°C and melting temperatures were increased by >9 times and approximately 7.0°C, respectively. The mutation combination of V81P and G82E in adjacent positions more than doubled the effect of single mutations. Both mutation regions were at the end of long secondary-structure elements and probably rigidified the local structure. MDS indicated that a long loop region after positions 81 and 82 located at the end of the inner β-barrel was prone to unfold. The rigidified main chain and filling of a groove by the mutations on the bottom of the active site canyon may stabilize the mutants and thus improve their thermostability.  相似文献   

2.
The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation.  相似文献   

3.
Four maize (Zea mays L.) inbreds representing genetic differences in seedling cold tolerance were used to determine the effect of growth temperatures on dry weight accumulation and mitochondrial properties, especially the alternative oxidase capacity. Seedlings were grown in darkness at 30°C (constant), 14°C (constant), and 15°C for 16 hours and 8°C for 8 hours. Inbreds B73 and B49 were characterized as cold tolerant while G50 and G84 were cold sensitive. Shoot growth rate of cold-sensitive inbreds in the lower temperatures was slower relative to the tolerant inbreds. Mesocotyl tissue was particularly sensitive to low temperatures during growth after germination. There were no significant differences in relative rates of mitochondrial respiration in the cold-tolerant compared to cold-sensitive inbreds measured at 25°C. Mitochondria from all seedlings grown at all temperatures had the ability to phosphorylate as indicated by the observation of respiratory control. This result indicated that differences in low temperature growth were probably not related to mitochondrial function at low temperatures. Alternative oxidase capacity was higher in mitochondria from seedlings of all inbreds grown at 14°C compared to 30°C. Capacities in seedlings of 14°C-grown B73 and G50 were higher than in B49 and G84. Capacities in seedlings grown for 16 hours at 15°C and 8 hours at 8°C were similar to those from 14°C-grown except in G50 which was lower and similar to those grown at 30°C. Mesocotyl tissue was the most responsive tissue to low growth temperature. Coleoptile plus leaf tissue responded similarly but contained lower capacities. Antibody probing of western blots of mitochondrial proteins confirmed that differences in alternative oxidase capacities were due to differences in levels of the alternative oxidase protein. Male sterile lines of B73 were also grown under the three different temperature regimes. These lines grew equally as well as the normal B73 at all temperatures and the response of alternative oxidase capacity and protein to low growth temperature was similar to normal B73.  相似文献   

4.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

5.
We have developed a novel cell surface display system by employing FadL as an anchoring motif, which is an outer membrane protein involved in long-chain fatty acid transport in Escherichia coli. A thermostable Bacillus sp. strain TG43 lipase (44.5 kDa) could be successfully displayed on the cell surface of E. coli in an active form by C-terminal deletion-fusion of lipase at the ninth external loop of FadL. The localization of the truncated FadL-lipase fusion protein on the cell surface was confirmed by confocal microscopy and Western blot analysis. Lipase activity was mainly detected with whole cells, but not with the culture supernatant, suggesting that cell lysis was not a problem. The activity of cell surface-displayed lipase was examined at different temperatures and pHs and was found to be the highest at 50°C and pH 9 to 10. Cell surface-displayed lipase was quite stable, even at 60 and 70°C, and retained over 90% of the full activity after incubation at 50°C for a week. As a potential application, cell surface-displayed lipase was used as a whole-cell catalyst for kinetic resolution of racemic methyl mandelate. In 36 h of reaction, (S)-mandelic acid could be produced with the enantiomeric excess of 99% and the enantiomeric ratio of 292, which are remarkably higher than values obtained with crude lipase or cross-linked lipase crystal. These results suggest that FadL may be a useful anchoring motif for displaying enzymes on the cell surface of E. coli for whole-cell biocatalysis.  相似文献   

6.
Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not.  相似文献   

7.
1. If dilute solutions of purified trypsin of low salt concentration at pH from 1 to 7 are heated to 100°C. for 1 to 5 minutes and then cooled to 20°C. there is no loss of activity or formation of denatured protein. If the hot trypsin solution is added directly to cold salt solution, on the other hand, all the protein precipitates and the supernatant solution is inactive. 2. The per cent of the total protein and activity present in the soluble form decreases from 100 per cent to zero as the temperature is raised from 20°C. to 60°C. and increases again from zero to 100 per cent as the solution is cooled from 60°C. to 20°C. The per cent of the total protein present in the soluble (native) form at any one temperature is nearly the same whether the temperature is reached from above or below. 3. If trypsin solutions at pH 7 are heated for increasing lengths of time at various temperatures and analyzed for total activity and total protein nitrogen after cooling, and for soluble activity and soluble (native) protein nitrogen, it is found that the soluble activity and soluble protein nitrogen decrease more and more rapidly as the temperature is raised, in agreement with the usual effects of temperature on the denaturation of protein. The total protein and total activity, on the other hand, decrease more and more rapidly up to about 70°C. but as the temperature is raised above this there is less rapid change in the total protein or total activity and at 92°C. the solutions are much more stable than at 42°C. 4. Casein and peptone are not digested by trypsin at 100°C. but when this digestion mixture is cooled to 35°C. rapid digestion occurs. A solution of trypsin at 100°C. added to peptone solution at zero degree digests the peptone much less rapidly than it does if the trypsin solution is allowed to cool slowly before adding it to the peptone solution. 5. The precipitate of insoluble protein obtained from adding hot trypsin solutions to cold salt solutions contains the S-S groups in free form as is usual for denatured protein. 6. The results show that there is an equilibrium between native and denatured trypsin protein the extent of which is determined by the temperature. Above 60°C. the protein is in the denatured and inactive form and below 20°C. it is in the native and active form. The equilibrium is attained rapidly. The results also show that the formation of denatured protein is proportional to the loss in activity and that the re-formation of native protein is proportional to the recovery of activity of the enzyme. This is strong evidence for the conclusion that the proteolytic activity of the preparation is a property of the native protein molecule.  相似文献   

8.
Hurry VM  Huner NP 《Plant physiology》1992,100(3):1283-1290
Photoinhibition of photosynthesis and its recovery were studied in wheat (Triticum aestivum L.) leaves grown at nonhardening (20°C) and cold-hardening (5°C) temperatures. Cold-hardened wheat leaves were less susceptible to photoinhibition at 5°C than nonhardened leaves, and the winter cultivars, Kharkov and Monopol, were less susceptible than the spring cultivar, Glenlea. The presence of chloramphenicol, a chloroplastic protein synthesis inhibitor, increased the susceptibility to photoinhibition, but cold-hardened leaves still remained less susceptible to photoinhibition than nonhardened leaves. Recovery at 50 μmol m−2 s−1 photosynthetic photon flux density and 20°C was at least biphasic, with a fast and a slow phase in all cultivars. Cold-hardened leaves recovered maximum fluorescence and maximum variable fluorescence in the dark-adapted state during the fast phase at a rate of 42% h−1 compared with 22% h−1 for nonhardened leaves. The slow phase occurred at similar rates (2% h−1) in cold-hardened and nonhardened leaves. Full recovery required up to 30 h. Fast-recovery phase was not reduced by either lowering the recovery temperature to 5°C or by the presence of chloramphenicol. Slow-recovery phase was inhibited by both treatments. Hence, the fast phase of recovery does not require de novo chloroplast protein synthesis. In addition, only approximately 60% of the photochemical efficiency lost through photoinhibition at 5°C was associated with lost [14C]atrazine binding and, hence, with damage to the secondary quinone electron acceptor for photosystem II-binding site. We conclude that the decrease in susceptibility to photoinhibition exhibited following cold hardening of winter and spring cultivars is not due to an increased capacity for repair of photoinhibitory damage at 5°C but reflects intrinsic properties of the cold-hardened photosynthetic apparatus. A model to account for the fast component of recovery is discussed.  相似文献   

9.
The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.  相似文献   

10.
The response of maize (Zea mays L.) protoplasts to high temperature stress was investigated. After isolation and electroporation, protoplasts were preincubated for 12 hours at 26°C then incubated for 6 hours at elevated temperatures. The pattern of polypeptides synthesized by these protoplasts during the last hour was monitored by in vivo labeling with 35S-methionine. Incubation at 40° and 42°C resulted in the synthesis of polypeptides not detectable at 26°C. Introduction of a chimeric maize heat shock protein 70 promoter-chloramphenicol acetyltransferase coding region gene into protoplasts via electroporation resulted in the temperature-dependent induction of chloramphenicol acetyltransferase activity with maximal activity at 40°C. In the same protoplasts, a second chimeric gene, in which the firefly luciferase coding region was under the control of the 35S promoter from cauliflower mosaic virus, did not show an increase in expression after incubation at higher temperatures. Maize protoplasts provide a system to study molecular responses to high temperature stress.  相似文献   

11.
Shewanella livingstonensis Ac10, a psychrotrophic gram-negative bacterium isolated from Antarctic seawater, produces eicosapentaenoic acid (EPA) as a component of phospholipids at low temperatures. EPA constitutes about 5% of the total fatty acids of cells grown at 4°C. We found that five genes, termed orf2, orf5, orf6, orf7, and orf8, are specifically required for the synthesis of EPA by targeted disruption of the respective genes. The mutants lacking EPA showed significant growth retardation at 4°C but not at 18°C. Supplementation of a synthetic phosphatidylethanolamine that contained EPA at the sn-2 position complemented the growth defect. The EPA-less mutant became filamentous, and multiple nucleoids were observed in a single cell at 4°C, indicating that the mutant has a defect in cell division. Electron microscopy of the cells by high-pressure freezing and freeze-substitution revealed abnormal intracellular membranes in the EPA-less mutant at 4°C. We also found that the amounts of several membrane proteins were affected by the depletion of EPA. While polyunsaturated fatty acids are often considered to increase the fluidity of the hydrophobic membrane core, diffusion of a small hydrophobic molecule, pyrene, in the cell membranes and large unilamellar vesicles prepared from the lipid extracts was very similar between the EPA-less mutant and the parental strain. These results suggest that EPA in S. livingstonensis Ac10 is not required for bulk bilayer fluidity but plays a beneficial role in membrane organization and cell division at low temperatures, possibly through specific interaction between EPA and proteins involved in these cellular processes.  相似文献   

12.
Bacterial ice nucleation: a factor in frost injury to plants   总被引:23,自引:4,他引:19       下载免费PDF全文
Lindow SE  Arny DC  Upper CD 《Plant physiology》1982,70(4):1084-1089
Heterogeneous ice nuclei are necessary, and the common epiphytic ice nucleation active (INA) bacteria Pseudomonas syringae van Hall and Erwinia herbicola (Löhnis) Dye are sufficient to incite frost injury to sensitive plants at −5°C. The ice nucleation activity of the bacteria occurs at the same temperatures at which frost injury to sensitive plants occurs in nature. Bacterial ice nucleation on leaves can be detected at about −2°C, whereas the leaves themselves, i.e. without INA bacteria, contain nuclei active only at much lower temperatures. The temperature at which injury to plants occurs is predictable on the basis of the ice nucleation activity of leaf discs, which in turn depends on the number and ice nucleation activity of their resident bacteria. Bacterial isolates which are able to incite injury to corn at −5°C are always active as ice nuclei at −5°C. INA bacteria incited frost injury to all of the species of sensitive plants tested.  相似文献   

13.
Thermal acclimation by Saxifraga cernua to low temperatures results in a change in the optimum temperature for gross photosynthetic activity and may directly involve the photosynthetic apparatus. In order to test this hypothesis photosynthetic electron transport activity of S. cernua thylakoids acclimated to growth temperatures of 20°C and 10°C was measured in vitro. Both populations exhibited optimum temperatures for whole chain and PSII electron transport activity at temperatures close to those at which the plants were grown. Chlorophyll a fluorescence transients from 10°C-acclimated leaves showed higher rates in the rise and subsequent quenching of variable fluorescence at low measuring temperatures; 20°C-acclimated leaves showed higher rates of fluorescence rise at higher measuring temperatures. At these higher temperatures, fluorescence quenching rates were similar in both populations. The kinetics of State 1-State 2 transitions in 20°C- and 10°C-acclimated leaf discs were measured as changes in the magnitude of the fluorescence emission maxima measured at 77K. Leaves acclimated at 10°C showed a larger F730/F695 ratio at low temperatures, while at higher temperatures, 20°C-acclimated leaves showed a higher F730/F695 ratio after the establishment of State 2. High incubation temperatures also resulted in a decrease in the F695/F685 ratio for 10°C-acclimated leaves, suggesting a reduction in the excitation transfer from the light-harvesting complex of photosystem II to photosystem II reaction centers. The relative amounts of chlorophyll-protein complexes and thylakoid polypeptides separated electro-phoretically were similar for both 20°C- and 10°C-acclimated leaves. Thus, photosynthetic acclimation to low temperatures by S. cernua is correlated with an increase in photosynthetic electron transport activity but does not appear to be accompanied by major structural changes or different relative amounts in thylakoid protein composition.  相似文献   

14.
Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30′. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album.  相似文献   

15.
Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase (SacKdgA) displays optimal activity at 95 °C and is studied as a model enzyme for aldol condensation reactions. For application of SacKdgA at lower temperatures, a library of randomly generated mutants was screened for improved synthesis of 2-keto-3-deoxygluconate from pyruvate and glyceraldehyde at the suboptimal temperature of 50 °C. The single mutant SacKdgA-V193A displayed a threefold increase in activity compared with wild type SacKdgA. The increased specific activity at 40–60 °C of this mutant was observed, not only for the condensation of pyruvate with glyceraldehyde, but also for several unnatural acceptor aldehydes. The optimal temperature for activity of SacKdgA-V193A was lower than for the wild type enzyme, but enzymatic stability of the mutant was similar to that of the wild type, indicating that activity and stability were uncoupled. Valine193 has Van der Waals interactions with Lysine153, which covalently binds the substrate during catalysis. The mutation V193A introduced space close to this essential residue, and the increased activity of the mutant presumably resulted from increased flexibility of Lysine153. The increased activity of SacKdgA-V193A with unaffected stability demonstrates the potential for optimizing extremely thermostable aldolases for synthesis reactions at moderate temperatures.  相似文献   

16.
We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at −5°C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35°C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.  相似文献   

17.
A postulated role of the CN-resistant alternative respiratory pathway in plants is the maintenance of mitochondrial electron transport at low temperatures that would otherwise inhibit the main phosphorylating pathway and prevent the formation of toxic reactive oxygen species. This role is supported by the observation that alternative oxidase protein levels often increase when plants are subjected to growth at low temperatures. We used oxygen isotope fractionation to measure the distribution of electrons between the main and alternative pathways in mung bean (Vigna radiata) and soybean (Glycine max) following growth at low temperature. The amount of alternative oxidase protein in mung bean grown at 19°C increased over 2-fold in both hypocotyls and leaves compared with plants grown at 28°C but was unchanged in soybean cotyledons grown at 14°C compared with plants grown at 28°C. When the short-term response of tissue respiration was measured over the temperature range of 35°C to 9°C, decreases in the activities of both main and alternative pathway respiration were observed regardless of the growth temperature, and the relative partitioning of electrons to the alternative pathway generally decreased as the temperature was lowered. However, cold-grown mung bean plants that up-regulated the level of alternative oxidase protein maintained a greater electron partitioning to the alternative oxidase when measured at temperatures below 19°C supporting a role for the alternative pathway in response to low temperatures in mung bean. This response was not observed in soybean cotyledons, in which high levels of alternative pathway activity were seen at both high and low temperatures.  相似文献   

18.
In order to obtain evidence for the existence of psychrophilic methanogenic communities in sediments of deep lakes that are low-temperature environments (4 to 5°C), slurries were first incubated at temperatures between 4 and 60°C for several weeks, at which time they were amended, or not, with an additional substrate, such as cellulose, butyrate, propionate, acetate, or hydrogen, and further incubated at 6°C. Initial methane production rates were highest in slurries preincubated at temperatures between 4 and 15°C, with maximal rates in slurries kept at 6°C. Hydrogen-amended cultures were the only exceptions, with the highest methane production rates at 6°C after preincubation at 30°C.  相似文献   

19.
The Aspergillus japonicus β-fructofuranosidase catalyzes the industrially important biotransformation of sucrose to fructooligosaccharides. Operating at high substrate loading and temperatures between 50 and 60°C, the enzyme activity is negatively influenced by glucose product inhibition and thermal instability. To address these limitations, the solvent-exposed loop regions of the β-fructofuranosidase were engineered using a combined crystal structure- and evolutionary-guided approach. This semirational approach yielded a functionally enriched first-round library of 36 single-amino-acid-substitution variants with 58% retaining activity, and of these, 71% displayed improved activities compared to the parent. The substitutions yielding the five most improved variants subsequently were exhaustively combined and evaluated. A four-substitution combination variant was identified as the most improved and reduced the time to completion of an efficient industrial-like reaction by 22%. Characterization of the top five combination variants by isothermal denaturation assays indicated that these variants displayed improved thermostability, with the most thermostable variant displaying a 5.7°C increased melting temperature. The variants displayed uniquely altered, concentration-dependent substrate and product binding as determined by differential scanning fluorimetry. The altered catalytic activity was evidenced by increased specific activities of all five variants, with the most improved variant doubling that of the parent. Variant homology modeling and computational analyses were used to rationalize the effects of amino acid changes lacking direct interaction with substrates. Data indicated that targeting substitutions to loop regions resulted in improved enzyme thermostability, specific activity, and relief from product inhibition.  相似文献   

20.
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号