首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
γ-Secretase is an intramembrane-cleaving protease related to the etiology of Alzheimer disease. γ-Secretase is a membrane protein complex composed of presenilin (PS) and three indispensable subunits: nicastrin, Aph-1, and Pen-2. PS functions as a protease subunit forming a hydrophilic catalytic pore structure within the lipid bilayer. However, it remains unclear how other subunits are involved in the pore formation. Here, we show that the hydrophilic pore adopted with an open conformation has already been formed by PS within the immature γ-secretase complex. The binding of the subunits induces the close proximity between transmembrane domains facing the catalytic pore. We propose a model in which the γ-secretase subunits restrict the arrangement of the transmembrane domains of PS during the formation of the functional structure of the catalytic pore.  相似文献   

2.
In studies of green fluorescence protein (GFP) or other proteins with the use of GFP as a marker, the fluorescence of GFP is for the most part related directly to the nativity of its structure. Naturally, such a relation does exist since the chromophore of this protein is formed autocatalytically only just after GFP acquires its native structure. However, the fluorescence method may not yield reliable information on protein structure when studying renaturation and denaturation of this protein (with the formed chromophore). Using proteolysis, denaturant gradient gel electrophoresis and circular dichroism, we demonstrate herein that at major disturbances of the native structure of protein GFP-cycle3 the intensity of fluorescence of its chromophore can change insignificantly. In other words, the chromophore fluorescence does not reliably mirror alterations in protein structure. Since the main conclusions of this study are especially qualitative, it can be suggested that during renaturation/denaturation of wild-type GFP and its “multicolored” mutants their fluorescence is also not always associated with the changes in the structure of these proteins.  相似文献   

3.
The assembly of photoreceptor outer segments into stacked discs is a complicated process, the precise regulation of which remains a mystery. It is known that the integrity of the outer segment is heavily dependent upon surrounding cell types including the retinal pigment epithelium and Müller cells; however the role played by Müller cells within this photoreceptor-specific process has not been fully explored. Using an RPE-deprived but otherwise intact Xenopus laevis eye rudiment preparation, we reveal that Müller cell involvement in outer segment assembly is dependent upon the stimulus provided to the retina. Pigment epithelium-derived factor is able to support proper membrane folding after inhibition of Müller cell metabolism by alpha-aminoadipic acid, while isopropyl beta-D-thiogalactoside, a permissive glycan, requires intact Müller cell function. These results demonstrate that both intrinsic and extrinsic redundant mechanisms exist to support the ability of photoreceptors to properly assemble their outer segments. Our study further suggests that the receptor for pigment epithelium-derived factor resides in photoreceptors themselves while that for permissive glycans is likely localized to Müller cells, which in turn communicate with photoreceptors to promote proper membrane assembly.  相似文献   

4.
Trp222 of diketoreductase (DKR), an enzyme responsible for reducing a variety of ketones to chiral alcohols, is located at the hydrophobic dimeric interface of the C-terminus. Single substitutions at DKR Trp222 with either canonical (Val, Leu, Met, Phe and Tyr) or unnatural amino acids (UAAs) (4-cyano-L-phenylalanine, 4-methoxy-L-phenylalanine, 4-phenyl-L-phenyalanine, O-tert-butyl-L-tyrosine) inverts the enantiotope preference of the enzyme toward 2-chloro-1-phenylethanone with close side chain correlation. Analyses of enzyme activity, substrate affinity and ternary structure of the mutants revealed that substitution at Trp222 causes a notable change in the overall enzyme structure, and specifically in the entrance tunnel to the active center. The size of residue 222 in DKR is vital to its enantiotope preference. Trp222 serves as a “gate keeper” to control the direction of substrate entry into the active center. Consequently, opposite substrate-binding orientations produce respective alcohol enantiomers.  相似文献   

5.
We show that protein kinase C (PKC) θ localized at the Golgi complex is partially conjugated to monoubiquitin. Using the inactive T538A and activable T538E mutants of PKCθ, we demonstrate that the presence of an uncharged residue at the 538 position of the activation loop favors both association with the Golgi and monoubiquitination of the kinase. Moreover, the inactive PKCθ does not translocate from the Golgi in response to a short-term cell stimulation with a phorbol ester and is subjected to different proteolytic degradation pathways compared to the activable cytosolic kinase. These findings highlight the role of T538 as a critical determinant to address the activable and the inactive PKCθ molecules to different intracellular compartments and to specific post-transductional modifications. The functional relevance of these observations is supported by the impaired cell division observed in phenotypes expressing high levels of the inactive PKCθ.  相似文献   

6.
The Arabidopsis G subunit, GP1, was expressedwithin Escherichia coli by co-transformation with the expressionvector and the dnaY gene which encodes tRNAArg AGA/AGG. Isolation of the recombinant GP1 in a highly pureform could be achieved by a combination of anion exchange and dyeaffinity chromatography or by a single step affinity procedure viachromatography on 4-amino-anilido-GTP agarose. The recombinant proteinyielded by both procedures was highly active and bound GTPS withan apparent Kd in the nM range. GTPS binding wasstimulated two-fold in the presence of Zn2+ compared with that inthe presence of Mg2+, Mn2+ or Ca2+.Abbreviations: 4aaGTP, 4-amino-anilido-GTP; GTPS,guanosine- 5-(3-O-thiotriphosphate), PMSF,phenylmethylsulphonyl fluoride; PVDF, polvinylidene fluoride;rGP1, recombinant GP1  相似文献   

7.
In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called ‘stalk’. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.  相似文献   

8.
9.
Albani JR 《Carbohydrate research》2003,338(21):2233-2236
Energy-transfer studies between Trp residues of alpha(1)-acid glycoprotein and the fluorescent probe Calcofluor White were performed. Calcofluor White interacts with carbohydrate residues of the protein, while the three Trp residues are located at the surface (Trp-160) and in hydrophobic domains of the protein (Trp-25 and Trp-122). Binding of Calcofluor to the protein induces a decrease in the fluorescence intensity of the Trp residues accompanied by an increase of that of Calcofluor White. Efficiency (E) of Trp fluorescence quenching was determined to be equal to 45%, and the F?rster distance R(o), at which the efficiency of energy transfer is 50%, was calculated to be 18.13 A. This low distance and the value of the efficiency clearly indicate that energy transfer between Trp residues and Calcofluor White is weak.  相似文献   

10.
《FEBS letters》1986,206(1):93-98
We have investigated the kinetics of the intrinsic fluorescence drop observed when ATP is added to purified sarcoplasmic reticulum ATPase in a potassium-free medium containing magnesium and calcium, at pH 6 and 20°C. Under these conditions, analysis of the fluorescence drop is complex. Several events contributed to the rate of the fluorescence drop initiated by turnover, including phosphorylation, conformational transition of the phosphorylated complex, and dephosphorylation. On the other hand, when 75% of total fluorescence was quenched by energy transfer to the membrane-bound ionophore A23187, the observed turnoverdependent drop in residual fluorescence mainly reflected the conformational transition of the phosphorylated ATPase. Combination of fast kinetics with the quenching of selected tryptophan residues is suggested to be a promising tool for the study of proteins containing many of these residues.  相似文献   

11.
C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of signaling response and the selectivity of this response among DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG binding affinities. In this work, we characterized the C1B domain of protein kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or the sub-nanosecond dynamics of the protein backbone, but resulted in a > 100-fold increase in DAG binding affinity and a substantial change in microsecond timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between wild type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue (Gln128) in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan side chain into the water-lipid interface are important factors that modulate the DAG binding properties of the C1 domains.  相似文献   

12.
A method for fluorescence detection of a protein's redox state based on resonance energy transfer from an attached fluorescence label to the prosthetic group of the redox protein is described and tested for proteins containing three types of prosthetic groups: a type-1 copper site (azurin, amicyanin, plastocyanin, and pseudoazurin), a heme group (cytochrome c550), and a flavin mononucleotide (flavodoxin). This method permits one to reliably distinguish between reduced and oxidized proteins and to perform potentiometric titrations at submicromolar concentrations.  相似文献   

13.
14.
Serpentine receptors coupled to the heterotrimeric G protein, Gi2, are capable of stimulating DNA synthesis in a variety of cell types. A common feature of the Gi2-coupled stimulation of DNA synthesis is the activation of the mitogen-activated protein kinases (MAPKs). The regulation of MAPK activation by the Gi2-coupled thrombin and acetylcholine muscarinic M2 receptors occurs by a sequential activation of a network of protein kinases. The MAPK kinase (MEK) which phosphorylates and activates MAPK is also activated by phosphorylation. MEK is phosphorylated and activated by either Raf or MEK kinase (MEKK). Thus, Raf and MEKK converge at MEK to regulate MAPK. Gi2-coupled receptors are capable of activating MEK and MAPK by Raf-dependent and Raf-independent mechanisms. Pertussis toxin catalyzed ADP-ribosylation of αi2 inhibits both the Raf-dependent and-independent pathways activated by Gi2-coupled receptors. The Raf-dependent pathway involves Ras activation, while the Raf-independent activation of MEK and MAPK does not involve Ras. The Raf-independent activation of MEK and MAPK most likely involves the activation of MEKK. The vertebrate MEKK is homologous to the Ste11 and Byr2 protein kinases in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The yeast Ste11 and Byr2 protein kinases are involved in signal transduction cascades initiated by pheromone receptors having a 7 membrane spanning serpentine structure coupled to G proteins. MEKK appears to be conserved in the regulation of G protein-coupled signal pathways in yeast and vertebrates. Raf represents a divergence in vertebrates from the yeast pheromone-responsive protein kinase system. Defining MEKK and Raf as a divergence in the MAPK regulatory network provides a mechanism for differential regulation of this system by Gi2-coupled receptors as well as other receptor systems, including the tyrosine kinases.  相似文献   

15.
《朊病毒》2013,7(5):453-460
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.  相似文献   

16.
Allergic reactions are triggered by the interaction between IgE and its high-affinity receptor, FcεRI. Various studies have mapped the interaction surface between IgE and its cellular receptors to the third constant domain of IgE (Cε3). The isolated Cε3 domain has been shown to exist as a molten globule, and the domain retains significant flexibility within the context of the IgE protein. Here we have analyzed the structural basis of the intrinsic flexibility of this domain. We have compared the sequence of the Cε3 domain to the sequences of other members of the C1 subset of the immunoglobulin superfamily and observed that Cε3 has an unusually high electrostatic charge and an unusually low content of hydrophobic residues. Mutations restoring Cε3 to a more canonical sequence were introduced in an attempt to derive a more structured domain, and several mutants display decreased levels of disorder. Engineered domains of Cε3 with a range of structural rigidities could serve as important tools for the elucidation of the role of flexibility of the Cε3 domain in IgE's biological functions.  相似文献   

17.
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.  相似文献   

18.
Glutamate dehydrogenase from Clostridium symbiosum displays unusual kinetic behaviour at high pH when compared with other members of this enzyme family. Structural and sequence comparisons with GDHs from other organisms have indicated that the Asp residue at position 114 in the clostridial enzyme may account for these differences. By replacing this residue by Asn, a mutant protein has been created with altered functional properties at high pH. This mutant protein can be efficiently overexpressed in Escherichia coli, and several criteria, including mobility in non-denaturing electrophoresis, circular dichroism (CD) spectra and initial crystallisation studies, suggest a folding and an assembly comparable to those of the wild-type protein. The D114N mutant enzyme shows a higher optimum pH for activity than the wild-type enzyme, and both CD data and activity measurements show that the distinctive time-dependent reversible conformational inactivation seen at high pH in the wild-type enzyme is abolished in the mutant.  相似文献   

19.
Glycolipids of peripheral leukocytes which had been used for the production of interferon were separated into oligoglycosylceramides, polyglycosylceramides and polyglycosylpeptides (erythroglycan). Neutral oligoglycosylceramides comprised glucosylceramide, galactosylceramide, lactosylceramide, lactotriaosylceramide, globotriaosylceramide andneolactotetraosylceramide. Globotetraosylceramide was not detected. Glycolipids which were more complex thanneolactotetraosylceramide belonged exclusively to theneolacto series of compounds and were essentially unbranched at galactopyranosyl residues. The polyglycosylceramide fraction contained a glycolipid with a probable structure Gal1-4(Fuc1-3) GlcNAc1-3Gal1-4GlcNAc1-3 Gal1-4GlcNAc1-3Gal1-4Glc1-1ceramide. Polyglycosylpeptides were found only in trace amounts and were also unbranched at galactopyranosyl residues. All glycoconjugates studies did not contain significant amounts of carbohydrate structures derived from ABH immunodominant groups.Nomenclature Gal1-4Gal1-4GlcCer Lactotrioasylcermide (LcOse3Cer) - Gal1-4Gal1-4GlcCer globotriaosylceramide, (GbOse4Cer) - GalNAc1-3Gal1-4 Gal1-4GlcCer globoside (globotetraosylceramide, GbOse4Cer) - Gal1-4GlcNAc1-3Gal1-4GlcCer paragloboside (lacto-N-neo tetraosylceramide,nLcOse4Cer)  相似文献   

20.
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique that allows one to generate sub-millisecond glutamate concentration jumps to locate possible binding sites of the glutamate transporter for the cotransported proton. One candidate for this binding site, the highly conserved glutamic acid residue Glu-373 of EAAC1, was mutated to glutamine. Our results demonstrate that the mutant transporter does not catalyze net transport of glutamate, whereas Na(+)/glutamate homoexchange is unimpaired. Furthermore, the voltage dependence of the rates of Na(+) binding and glutamate translocation are unchanged compared with the wild-type. In contrast to the wild-type, however, homoexchange of the E373Q transporter is completely pH-independent. In line with these findings the transport kinetics of the mutant EAAC1 show no deuterium isotope effect. Thus, we suggest a new transport mechanism, in which Glu-373 forms part of the binding site of EAAC1 for the cotransported proton. In this model, protonation of Glu-373 is required for Na(+)/glutamate translocation, whereas the relocation of the carrier is only possible when Glu-373 is negatively charged. Interestingly, the Glu-373-homologous amino acid residue is glutamine in the related neutral amino acid transporter alanine-serine-cysteine transporter. The function of alanine-serine-cysteine transporter is neither potassium- nor proton-dependent. Consequently, our results emphasize the general importance of glutamate and aspartate residues for proton transport across membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号