首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.  相似文献   

2.
Zhang Y  Chan DC 《FEBS letters》2007,581(11):2168-2173
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.  相似文献   

3.
Mitochondria amplify activation of caspases during apoptosis by releasing cytochrome c and other cofactors. This is accompanied by fragmentation of the organelle and remodeling of the cristae. Here we provide evidence that Optic Atrophy 1 (OPA1), a profusion dynamin-related protein of the inner mitochondrial membrane mutated in dominant optic atrophy, protects from apoptosis by preventing cytochrome c release independently from mitochondrial fusion. OPA1 does not interfere with activation of the mitochondrial "gatekeepers" BAX and BAK, but it controls the shape of mitochondrial cristae, keeping their junctions tight during apoptosis. Tightness of cristae junctions correlates with oligomerization of two forms of OPA1, a soluble, intermembrane space and an integral inner membrane one. The proapoptotic BCL-2 family member BID, which widens cristae junctions, also disrupts OPA1 oligomers. Thus, OPA1 has genetically and molecularly distinct functions in mitochondrial fusion and in cristae remodeling during apoptosis.  相似文献   

4.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   

5.
OPA1 encodes a large GTPase related to dynamins, anchored to the mitochondrial cristae inner membrane, facing the intermembrane space. OPA1 haplo-insufficiency is responsible for the most common form of autosomal dominant optic atrophy (ADOA, MIM165500), a neuropathy resulting from degeneration of the retinal ganglion cells and optic nerve atrophy. Here we show that down-regulation of OPA1 in HeLa cells using specific small interfering RNA (siRNA) leads to fragmentation of the mitochondrial network concomitantly to the dissipation of the mitochondrial membrane potential and to a drastic disorganization of the cristae. These events are followed by cytochrome c release and caspase-dependent apoptotic nuclear events. Similarly, in NIH-OVCAR-3 cells, the OPA1 siRNA induces mitochondrial fragmentation and apoptosis, the latter being inhibited by Bcl2 overexpression. These results suggest that OPA1 is a major organizer of the mitochondrial inner membrane from which the maintenance of the cristae integrity depends. As loss of OPA1 commits cells to apoptosis without any other stimulus, we propose that OPA1 is involved in the cytochrome c sequestration and might be a target for mitochondrial apoptotic effectors. Our results also suggest that abnormal apoptosis is a possible pathophysiological process leading to the retinal ganglion cells degeneration in ADOA patients.  相似文献   

6.
The goal of this review is to highlight recent developments in the field of mitochondrial membrane processes, which provide new insights into the relation between mitochondrial fission/fusion events and the mitochondrial permeability transition (MPT). First, we distinguish between pore opening events at the inner and outer mitochondrial membranes. Inner membrane pore opening, or iMPT, leads to membrane depolarization, release of low molecular weight compounds, cristae reorganization and matrix swelling. Outer membrane pore opening, or oMPT, allows partial release of apoptotic proteins, while complete release requires additional remodeling of inner membrane cristae. Second, we summarize recent data that supports a similar temporal and physical separation between inner and outer mitochondrial membrane fusion events. Finally, we focus on cristae remodeling, which may be the intersection between oMPT and iMPT events. Interestingly, components of fusion machinery, such as mitofusin 2 and OPA1, appear to play a role in cristae remodeling as well. Special issue dedicated to John P. Blass.  相似文献   

7.
Mitochondria are important participants in apoptosis, releasing cytochrome c into the cytoplasm and undergoing extensive fragmentation. However, mechanisms underlying these processes remain unclear. Here, we demonstrate that cytochrome c release during apoptosis precedes mitochondrial fragmentation. Unexpectedly, OPA1, a dynamin-like GTPase of the mitochondrial intermembrane space important for maintaining cristae structure, is co-released with cytochrome c. To mimic the loss of OPA1 occurring after its release, we knocked down OPA1 expression using RNA interference. This triggered structural changes in the mitochondrial cristae and caused increased fragmentation by blocking mitochondrial fusion. Because cytochrome c is mostly sequestered within cristae folds but released rapidly and completely during apoptosis, we examined the effect of OPA1 loss on cytochrome c release, demonstrating that it is accelerated. Thus, our results suggest that an initial mitochondrial leak of OPA1 leads to cristae structural alterations and exposure of previously sequestered protein pools, permitting continued release in a feed-forward manner to completion. Moreover, our findings indicate that the resulting OPA1 depletion causes a block in mitochondrial fusion, providing a compelling mechanism for the prominent increase in mitochondrial fragmentation seen during apoptosis.  相似文献   

8.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.  相似文献   

9.
The neuropathological hallmarks of Alzheimer's Disease are plaques and neurofibrillary tangles. Yet, Alzheimer's is a complex disease with many contributing factors, such as energy-metabolic changes, which have been documented in autopsy brains from individuals with Alzheimer's and animal disease models alike. One conceivable explanation is that the interplay of age-related extracellular and intracellular alterations pertaining to Alzheimer's, such as cerebrovascular changes, protein aggregates and inflammation, evoke a mitochondrial response. However, it is not clear if and how mitochondria can contribute to Alzheimer's pathophysiology. This study focuses on one particular aspect of this question by investigating the functional interaction between the microtubule-associated protein tau and the mitochondrial inner membrane fusion machinery, which shows alterations in Alzheimer's brains. OPA1 is an essential inner membrane-fusion protein regulated by the two membrane proteases OMA1 and YME1L1. Assessment of OPA1 proteolysis—usually found in dividing mitochondria—and posttranslational tau modifications in mouse and human neuroblastoma cells under different experimental conditions clarified the relationship between these two pathways: OPA1 hydrolysis and phosphorylation or dephosphorylation of tau may coincide, but are not causally related. OPA1 cleavage did not alter tau's phosphorylation pattern. Conversely, tau's phosphorylation state did not induce nor correlate with OPA1 proteolysis. These results irrefutably demonstrate that there is no direct functional interaction between posttranslational tau modifications and the regulation of the OMA1-OPA1 pathway, which implies a common root cause modulating both pathways in Alzheimer's.  相似文献   

10.
Mitochondria are dynamic organelles, the morphology of which results from an equilibrium between two opposing processes, fusion and fission. Mitochondrial fusion relies on dynamin‐related GTPases, the mitofusins (MFN1 and 2) in the outer mitochondrial membrane and OPA1 (optic atrophy 1) in the inner mitochondrial membrane. Apart from a role in the maintenance of mitochondrial DNA, little is known about the physiological role of mitochondrial fusion. Here we report that mitochondria hyperfuse and form a highly interconnected network in cells exposed to selective stresses. This process precedes mitochondrial fission when it is triggered by apoptotic stimuli such as UV irradiation or actinomycin D. Stress‐induced mitochondrial hyperfusion (SIMH) is independent of MFN2, BAX/BAK, and prohibitins, but requires L‐OPA1, MFN1, and the mitochondrial inner membrane protein SLP‐2. In the absence of SLP‐2, L‐OPA1 is lost and SIMH is prevented. SIMH is accompanied by increased mitochondrial ATP production and represents a novel adaptive pro‐survival response against stress.  相似文献   

11.
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.  相似文献   

12.
OPA1(Optic Atrophy 1)基因属于核基因,编码的蛋白是线粒体内源发动蛋白,是线粒体塑形蛋白家族的成员。OPA1蛋白通过不同位点的剪接,形成多种亚型,参与线粒体内膜融合,对线粒体形态结构有着重要的作用。OPA1与呼吸作用复合物直接相关,作为呼吸链的一部分,保持呼吸链的完整性,参与呼吸作用和能量代谢;在细胞凋亡过程中则以OPA1-PARL复合体的形式发挥抗凋亡因子的作用。研究显示,OPA1在类固醇物质的生成等方面,也有着不可替代的作用。OPA1对多种疾病有影响,是显性视神经萎缩症(Dominant Optic Atrophy,DOA)的主要基因座,OPA1突变不仅会导致视觉疾病,也能引起听觉神经病变.OPA1还参与热休克应答,在抗癌药毒性抑制方面也有重要作用。本文着重于介绍OPA1的结构与功能,及其在疾病中的作用。  相似文献   

13.
聂唯天  张歌  胡赢心  宫健  单春华 《生物磁学》2014,(12):2394-2396
OPA1(Optic Atrophy 1)基因属于核基因,编码的蛋白是线粒体内源发动蛋白,是线粒体塑形蛋白家族的成员。OPA1蛋白通过不同位点的剪接,形成多种亚型,参与线粒体内膜融合,对线粒体形态结构有着重要的作用。OPA1与呼吸作用复合物直接相关,作为呼吸链的一部分,保持呼吸链的完整性,参与呼吸作用和能量代谢;在细胞凋亡过程中则以OPA1-PARL复合体的形式发挥抗凋亡因子的作用。研究显示,OPA1在类固醇物质的生成等方面,也有着不可替代的作用。OPA1对多种疾病有影响,是显性视神经萎缩症(Dominant Optic Atrophy,DOA)的主要基因座,OPA1突变不仅会导致视觉疾病,也能引起听觉神经病变.OPA1还参与热休克应答,在抗癌药毒性抑制方面也有重要作用。本文着重于介绍OPA1的结构与功能,及其在疾病中的作用。  相似文献   

14.
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.  相似文献   

15.
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.  相似文献   

16.
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.  相似文献   

17.
Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins. Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function, however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to functional compartmentalization in the inner membrane of mitochondria.  相似文献   

18.
Proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 in mitochondria is emerging as a central regulatory hub that determines mitochondrial morphology under stress and in disease. Stress-induced OPA1 processing by OMA1 triggersmitochondrial fragmentation, which is associated with mitophagy and apoptosis in vitro. Here, we identify OMA1 as a critical regulator of neuronal survival in vivo and demonstrate that stress-induced OPA1 processing by OMA1 promotes neuronal death and neuroinflammatory responses. Using mice lacking prohibitin membrane scaffolds as a model of neurodegeneration, we demonstrate that additional ablation of Oma1 delays neuronal loss and prolongs lifespan. This is accompanied by the accumulation of fusion-active, long OPA1 forms, which stabilize the mitochondrial genome but do not preserve mitochondrial cristae or respiratory chain supercomplex assembly in prohibitin-depleted neurons. Thus, long OPA1 forms can promote neuronal survival independently of cristae shape, whereas stress-induced OMA1 activation and OPA1 cleavage limit mitochondrial fusion and promote neuronal death.  相似文献   

19.
The mitochondrial network provides the central cell’s energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.  相似文献   

20.
Neuronal mitochondrial dynamics are disturbed after ischemic stroke. Optic atrophy 1 (OPA1) and its GTPase activity are involved in maintaining mitochondrial cristae and inner membrane fusion. This study aimed to explore the role of OMA1-mediated OPA1 cleavage (S1-OPA1) in neurons exposed to cerebral ischemia and reperfusion. After oxygen-glucose deprivation (OGD) for 60 min, we found that mitochondrial fragmentation occurred successively in the axon and soma of neurons, accompanied by an increase in S1-OPA1. In addition, S1-OPA1 overexpression significantly aggravated mitochondrial damage in neurons exposed to OGD for 60 min and 24 h after OGD/R, characterized by mitochondrial fragmentation, decreased mitochondrial membrane potential, mitochondrial cristae ultrastructural damage, increased superoxide production, decreased ATP production and increased mitochondrial apoptosis, which was inhibited by the lysine 301 to alanine mutation (K301A). Furthermore, we performed neuron-specific overexpression of S1-OPA1 in the cerebral cortex around ischemia of middle cerebral artery occlusion/reperfusion (MCAO/R) mice. The results further demonstrated in vivo that S1-OPA1 exacerbated neuronal mitochondrial ultrastructural destruction and injury induced by cerebral ischemia-reperfusion, while S1-OPA1-K301 overexpression had no effect. In conclusion, ischemia induced neuronal OMA1-mediated cleavage of OPA1 at the S1 site. S1-OPA1 aggravated neuronal mitochondrial fragmentation and damage in a GTPase-dependent manner, and participated in neuronal ischemia-reperfusion injury.Subject terms: Stroke, Cell death in the nervous system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号