首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria.

Methodology/Principal Findings

The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically) and phosphorylation (determined using the glucose - hexokinase - glucose-6-phosphate dehydrogenase - NADP+ enzymatic system) rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (KmVox) and phosphorylation (KmVp) rates. We also demonstrate that determination of KmVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method.

Conclusions/Significance

Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.  相似文献   

2.
Abstract— Catecholamine storing particles mainly from rat brain hypothalamus and corpus striatum have been isolated by isopycnic centrifugation in density gradients made of colloidal silica. As markers, tritium-labelled noradrenaline, endogenous noradrenaline and dopamine were measured. Cytochrome oxidase was determined as an indicator of mitochondria.
Two distinct populations of amine containing particles were recognized with densities of 1 , 03–1.04 g/ml and 1 , 045–1.065 g/ml in continuous isotonic gradients made of silica sol and a polymer. The light fraction was assumed to contain myelin fragments, light synaptosomes and possibly also catecholamine storage vesicles, while the other one was probably a heavy population of synaptosomes containing more mitochondria. Free mitochondria were found in a band at a density of 1 , 09–1.11.
The distribution pattern in isotonic gradients was compared with that in density gradients made of silica sol and sucrose or sucrose alone. The heavy population of the catecholamine particles was found to have a higher density in hypertonic gradients. Furthermore these synaptosomes seemed to lose more mitochondria and catecholamines than those in isotonic gradients probably due to the hypertonicity.
The present results confirm similar findings by other workers separating brain sub- cellular particles in isotonic gradients of Ficoll and sucrose.
Colloidal silica solutions might be of value for analytical centrifugation of brain sub-cellular particles, since it has a lower tonicity than sucrose, lower viscosity than Ficoll and furthermore it is very easy to handle. The silica sol is inexpensive and allows large scale work.  相似文献   

3.
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)–mitochondria communication, as it allows for a more efficient transfer of Ca2+ into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER–mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3 h of GLP-1 treatment, paralleled by increased Ca2+ transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca2+ increases in GLP-1 treated cells. Inhibiting both Ca2+ release from the ER and Ca2+ entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER–mitochondria communication in VSMC, resulting in higher mitochondrial activity.  相似文献   

4.
We report here a development of the MultiSite GatewayTM-based versatile plasmid construction system applicable for the rapid and efficient preparation of Aspergillus oryzae expression plasmids. This system allows the simultaneous connection of the three DNA fragments inserted in entry clones along with a destination vector in a defined order and orientation. We prepared a variety of entry clones and destination vectors containing promoters, genes encoding carrier-proteins and fusion tags, and selectable markers, which makes it possible to generate 80 expression plasmids for each target protein. Using this system, plasmids for expression of the EGFP fused with the mitochondrial-targeting signal of citrate synthase (AoCit1) were generated. Tubular structures of mitochondria were visualized in the transformants expressing the AoCit1-EGFP fusion protein. This plasmid construction system allows us to prepare a large number of expression plasmids without laborious DNA manipulations, which would facilitate molecular biological studies on A. oryzae.  相似文献   

5.
6.
We have developed a rapid and precise method for glutathione quantitation by capillary electrophoresis, that allows a low amount of both redox forms to be measured. Small fragments of rat heart or liver tissues (20 mg wet weight) and the corresponding mitochondria (1 mg protein) were homogenized in 1% perchloric acid and the acid-soluble phase ultrafiltered by centrifugation with a microconcentrator (Mr cut-off 3000 Da). The analysis was performed at a constant temperature (28°C) using a Beckman P/ACE System 2100, equipped with a UV absorbance detector set to 200 nm. The limit of quantitation in heart tissue was 1.8 μM for GSH and 1.2 μM for GSSG. Myocardial concentrations of GSH and GSSG were 8.1±2.6 and 0.45±0.15 (nmol/mg protein±S.D.), respectively. The ratio of GSH to GSSG was 17.8±1.3 for heart tissue, whereas it was much higher (>100) in the mitochondria. An oxidative stress decreased the myocardial tissue GSH/GSSG ratio, indicating that the CE analysis of both glutathione forms is also a useful method to study biological redox modification.  相似文献   

7.
A simple and fast method of lipid analysis of isolated intact mitochondria by means of MALDI-TOF mass spectrometry is described. Mitochondria isolated from bovine heart and yeast have been employed to set up and validate the new method of lipid analysis. The mitochondrial suspension is directly applied over the target and, after drying, covered by a thin layer of the 9-aminoacridine matrix solution. The lipid profiles acquired with this procedure contain all peaks previously obtained by analyzing the lipid extracts of isolated mitochondria by TLC and/or mass spectrometry. The novel procedure allows the quick, simple, precise, and accurate analysis of membrane lipids, utilizing only a tiny amount of isolated organelle; it has also been tested with intact membranes of the bacterium Paracoccus denitrificans for its evolutionary link to present-day mitochondria. The method is of general validity for the lipid analysis of other cell fractions and isolated organelles.  相似文献   

8.
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation.  相似文献   

9.
Mitochondrial trafficking is influenced by neuronal activity, but it remains unclear how mitochondrial positioning influences neuronal transmission and plasticity. Here, we use live cell imaging with the genetically encoded presynaptically targeted Ca2+ indicator, SyGCaMP5, to address whether presynaptic Ca2+ responses are altered by mitochondria in synaptic terminals. We find that presynaptic Ca2+ signals, as well as neurotransmitter release, are significantly decreased in terminals containing mitochondria. Moreover, the localisation of mitochondria at presynaptic sites can be altered during long‐term activity changes, dependent on the Ca2+‐sensing function of the mitochondrial trafficking protein, Miro1. In addition, we find that Miro1‐mediated activity‐dependent synaptic repositioning of mitochondria allows neurons to homeostatically alter the strength of presynaptic Ca2+ signals in response to prolonged changes in neuronal activity. Our results support a model in which mitochondria are recruited to presynaptic terminals during periods of raised neuronal activity and are involved in rescaling synaptic signals during homeostatic plasticity.  相似文献   

10.
Maintenance of mitochondrial function and energy homeostasis requires both generation of newly synthesized and elimination of dysfunctional mitochondria. Impaired mitochondrial function and excessive mitochondrial content are major characteristics of aging and several human pathophysiological conditions, highlighting the pivotal role of the coordination between mitochondrial biogenesis and mitophagy. However, the cellular and molecular underpinnings of mitochondrial mass homeostasis remain obscure. In our recent study, we demonstrate that DCT-1, the Caenorhabditis elegans homolog of mammalian BNIP3 and BNIP3L/NIX, is a key mediator of mitophagy promoting longevity under stress. DCT-1 acts downstream of the PINK-1-PDR-1/Parkin pathway and is ubiquitinated upon mitophagy-inducing conditions to mediate the removal of damaged mitochondria. Accumulation of damaged mitochondria triggers SKN-1 activation, which initiates a bipartite retrograde signaling pathway stimulating the coordinated induction of both mitochondrial biogenesis and mitophagy genes. Taken together, our results unravel a homeostatic feedback loop that allows cells to adjust their mitochondrial population in response to environmental and intracellular cues. Age-dependent decline of mitophagy both inhibits removal of dysfunctional or superfluous mitochondria and impairs mitochondrial biogenesis resulting in progressive mitochondrial accretion and consequently, deterioration of cell function.  相似文献   

11.
 The in organello labeling pattern in wheat (Triticum aestivum) mitochondria isolated from imbibed embryos were compared with those from the commonly used starting material, etiolated seedlings. Mitochondria from imbibed embryos proved to be metabolically more active than those from etiolated seedlings and produced a large number of strongly in organello-labeled polypeptides. Immunoprecipitation of the labeled proteins enabled the identification of mitochondrially encoded subunits of the respiratory chain complex I, some of which could not be detected by conventional Western blotting due to their high hydrophobicity. A method for mass isolation of wheat embryos is also presented which allows easy preparation of large amounts of intact and highly active mitochondria suitable for biochemical studies. Received: 9 November 1998 / Revision received: 10 March 1999 / Accepted: 1 April 1999  相似文献   

12.
Mitochondrial porins or voltage-dependent anion channels (VDAC) are the main route for solute transport through outer mitochondrial membranes (OMM). In mammals, hexokinase (HK) binds to VDAC, which allows the channeling of ATP synthesized by oxidative phosphorylation toward HK. In plants, although HK has been found associated with OMM, evidence for an interaction with VDAC is scarce. Thus, in this work, we studied the physical and functional interaction between these proteins in beetroot mitochondria. To observe a physical interaction between HK and VDAC, OMM presenting HK activity were prepared from purified mitochondria. Protein complexes were solubilized from OMM with mild detergents and separated by centrifugation in glycerol gradients. Both HK activity and immunodetected VDAC were found in small (9S–13S) and large (>40S) complexes. OMM proteins were also separated according to their hydropathy by serial phase partitioning with Triton X-114. Most of HK activity was found in hydrophobic fractions where VDAC was also present. These results indicated that HK could be bound to VDAC in beetroot mitochondria. The functional interaction of HK with VDAC was demonstrated by observing the effect of apyrase on HK-catalyzed glucose phosphorylation in intact mitochondria. Apyrase, which hydrolyzes freely soluble ATP, competed efficiently with hexokinase for ATP when it was produced outside mitochondria (with PEP and pyruvate kinase), but not when it was produced inside mitochondria by oxidative phosphorylation. These results suggest that HK closely interacts with VDAC in beetroot mitochondria, and that this interaction allows the channeling of respiratory ATP toward HK through VDAC.  相似文献   

13.
We demonstrate a novel bio‐spectroscopic technique, “simultaneous Raman/GFP microspectroscopy”. It enables organelle specific Raman microspectroscopy of living cells. Fission yeast, Schizosaccharomyces pombe, whose mitochondria are green fluorescence protein (GFP) labeled, is used as a test model system. Raman excitation laser and GFP excitation light irradiate the sample yeast cells simultaneously. GFP signal is monitored in the anti‐Stokes region where interference from Raman scattering is negligibly small. Of note, 13 568 Raman spectra measured from different points of 19 living yeast cells are categorized according to their GFP fluorescence intensities, with the use of a two‐component multivariate curve resolution with alternate least squares (MCR‐ALS) analysis in the anti‐Stokes region. This categorization allows us to know whether or not Raman spectra are taken from mitochondria. Raman spectra specific to mitochondria are obtained by an MCR‐ALS analysis in the Stokes region of 1389 strongly GFP positive spectra. Two mitochondria specific Raman spectra have been obtained. The first one is dominated by protein Raman bands and the second by lipid Raman bands, being consistent with the known molecular composition of mitochondria. In addition, the second spectrum shows a strong band of ergosterol at 1602 cm?1, previously reported as “Raman spectroscopic signature of life of yeast.”  相似文献   

14.
Eukaryotic cells use diverse cytoskeleton-dependent machineries to control inheritance and intracellular positioning of mitochondria. In particular, microtubules play a major role in mitochondrial motility in the filamentous fungus Neurospora crassa and in mammalian cells. We examined the role of two novel Unc104/KIF1-related members of the kinesin family, Nkin2 and Nkin3, in mitochondrial motility in Neurospora. The Nkin2 protein is required for mitochondrial interactions with microtubules in vitro. Mutant hyphae lacking Nkin2 show mitochondrial motility defects in vivo early after germination of conidiospores. Nkin3, a member of a unique fungal-specific subgroup of small Unc104/KIF1-related proteins, is not associated with mitochondria in wild-type cells. However, it is highly expressed and recruited to mitochondria in Deltankin-2 mutants. Mitochondria lacking Nkin2 require Nkin3 for binding to microtubules in vitro, and mitochondrial motility defects in Deltankin-2 mutants disappear with up-regulation of Nkin3 in vivo. We propose that mitochondrial transport is mediated by Nkin2 in Neurospora, and organelle motility defects in Deltankin-2 mutants are rescued by Nkin3. Apparently, a highly versatile complement of organelle motors allows the cell to efficiently respond to exogenous challenges, a process that might also account for the great variety of different mitochondrial transport systems that have evolved in eukaryotic cells.  相似文献   

15.
Mycoplasma hyorhinis coisolates with the mitochondria of the cells in which it is carried as an infection. Since both mitochondria and mycoplasmas synthesize DNA by using the prokaryotic DNA polymerase gamma, the use of aphidicolin, which inhibits eukaryotic DNA polymerase alpha, allows for selective synthesis of mycoplasmal and mitochondrial DNA. The restriction patterns of mitochondria and mycoplasmas can easily be differentiated from each other in mixtures of both DNAs. Thus, it is possible to study the molecular biology of this noncultivable mycoplasma in situ rather than after growth in artificial media, with its potential genetic consequences during adjustment to axenic growth.  相似文献   

16.
Previously described mitochondrial isolation methods using differential centrifugation and/or Ficoll gradient centrifugation require 60 to 100 min to complete. We describe a method for the rapid isolation of mitochondria from mammalian biopsies using a commercial tissue dissociator and differential filtration. In this protocol, manual homogenization is replaced with the tissue dissociator’s standardized homogenization cycle. This allows for uniform and consistent homogenization of tissue that is not easily achieved with manual homogenization. Following tissue dissociation, the homogenate is filtered through nylon mesh filters, which eliminate repetitive centrifugation steps. As a result, mitochondrial isolation can be performed in less than 30 min. This isolation protocol yields approximately 2 x 1010 viable and respiration competent mitochondria from 0.18 ± 0.04 g (wet weight) tissue sample.  相似文献   

17.
The technics generally used for preparing root tip cells for microscopical examination destroy mitochondria and other cytoplasmic particles and remove lipoidal material. Fixation in a bichromate solution followed by treatment with osmic acid preserves these granules through normal embedding procedures (cf. Zirkle, 1929; Newcomer, 1940); also fixation in neutral formalin and embedding in the water-soluble wax, Aquax, may completely preserve lipoidal matter, and thus the mitochondria. The separation of cells in squash preparations usually entails acid hydrolysis of the intercellular cement. Treatment for one hour with a 5% solution of a commercial pectinase powder in a 1% aqueous solution of peptone allows good separation of cells of bean root tips fixed in acetic-alcohol. By this method it has been demonstrated that the Feulgen hydrolysis removes cytoplasmic and nucleolar RNA. To preserve the mitochondria it is advisable to immerse the bean roots in a 5% aqueous solution of polyvinyl alcohol for 24 hours and to separate the cells with a 10% solution of pectinase in a 1% peptone solution. This procedure preserves the granules, leaves the nucleus optically homogeneous, and gives a result most closely approximating to that observed in living root tip cells.  相似文献   

18.
Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.  相似文献   

19.
M.-E. Koller  I. Romslo  T. Flatmark 《BBA》1976,449(3):480-490
The mitochondrial ferrochelatase activity has been studied in coupled rat liver mitochondria using deuteroporphyrin IX (incorporated into liposomes of lecithin) and Fe(III) or Co(II) as the substrates.

1. 1. It was found that respiring mitochondria catalyze the insertion of Fe(II) and Co(II) into deuteroporphyrin. When Fe(III) was used as the metal donor, the reaction revealed an absolute requirement for a supply of reducing equivalents supported by the respiratory chain.

2. 2. A close correlation was found between the disappearance of porphyrin and the formation of heme which allows an accurate estimate of the extinction coefficient for the porphyrin to heme conversion. The value Δ (mM−1 · cm−1) = 3.5 for the wavelength pair 498 509 nm, is considerably lower than previously reported.

3. 3. The maximal rate of deuteroheme synthesis was found to be approx. 1 nM · min−1 · mg−1 of protein at 37 °C, pH 7.4 and optimal substrate concentrations, i.e. 75 μM Fe(III) and 50 μM deuteroporphyrin.

4. 4. Provided the mitochondria are supplemented with an oxidizable substrate, the presence of oxygen has no effect on the rate of deuteroheme synthesis.

Abbreviations: EPPS, (4-(2-hydroxyethyl)-1-piperazine propane sulphonic acid); HEPES, N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid; PIPES, piperazine-N,N′-2-bis(2-ethanesulphonic acid)  相似文献   


20.
The role of mitophagy, a process that allows the removal of damaged mitochondria from cells, remains unknown in multiple sclerosis (MS), a disease that is found associated with dysfunctional mitochondria. Here we have qualitatively and quantitatively studied the main players in PINK1-mediated mitophagy in peripheral blood mononuclear cells (PBMCs) of patients with relapsing–remitting MS. We found the variant c.491G>A (rs550510, p.G140E) of NDP52, one of the major mitophagy receptor genes, associated with a MS cohort. Through the characterization of this variant, we discovered that the residue 140 of human NDP52 is a crucial modulator of NDP52/LC3C binding, promoting the formation of autophagosomes in order to drive efficient mitophagy. In addition, we found that in the PBMC population, NDP52 is mainly expressed in B cells and by ensuring efficient mitophagy, it is able to limit the production of the proinflammatory cytokine TNF-α following cell stimulation. In sum, our results contribute to a better understanding of the role of NDP52 in mitophagy and underline, for the first time, a possible role of NDP52 in MS.Subject terms: Autophagy, Molecular modelling, Immunological disorders  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号