首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer immunosurveillance representing, till recently, the explanatory framework relating cancer and the immune system, does not convincingly explain tumor escape. At the beginning of the decade, a new theory emerged, namely the immunoediting theory, and it comprehensively defines the role of the immune system in carcinogenesis. The core of this theory embraces the concept that the immune system on the one hand protects the body from cancer and on the other it shapes the immunogenicity of these cancers, thus presents a persuasive rationalization of the resistance of tumors against the immune response. With the immune system playing, in this context, such a pivotal role in shaping the tumor immune profile and in subsequent oncogenesis, it seems rather paradoxical to accept the immunocompetent host's immune system as a constant moiety. While DNA mutations of immune genes create a rather polymorphic condition, their frequency is much lower than that of other genetic events. Of these, epigenetic alterations give rise to new epialleles, which can reach up to 100% per locus. Bearing in mind that cancer is characterized by a tremendous amount of epigenetic aberrations, in both gene and global level, it is reasonable to postulate that, for the same unknown causes, analogous aberrations could affect the immune genes. Should this be the case, the relation between oncogenesis and the immune system appears much more dynamic and complex. Such an immunoepigenetic approach to carcinogenesis could improve our understanding of a series of common cancer-related aspects, such as environmental risk factors, effectiveness of demethylating agents, failure of current immunotherapies, etc. Moreover, this immunoepigenetic paradigm will take the current perception of the immune system and cancer interrelation further and beyond, constituting that the immunoresistant cancer cell phenotype is not shaped by the immune system acting as a steady and rigid evolutionary pressure, but rather as an extremely dynamic variable.  相似文献   

2.
Aging of the immune system is associated with a dramatic reduction in responsiveness as well as functional dysregulation. This deterioration of immune function with advancing age is associated with an increased incidence of cancer. Although there is a plethora of reports evaluating the effect of immunotherapy in stimulating antitumor immune responses, the majority of these studies do not pay attention to the effect aging has on the immune system. Studies from our group and others indicate that immunotherapies could be effective in the young, are not necessarily effective in the old. To optimally stimulate an antitumor immune response in the old, it is necessary to (1) identify and understand the intrinsic defects of the old immune system and (2) use relevant models that closely reflect those of cancer patients, where self-tolerance and aging are present simultaneously. The present review summarizes some defects found in the old immune system affecting the activation of antitumor immune responses, the strategies used to activate stronger antitumor immune response in the old and the use of a tolerant animal tumor model to target a self-tumor antigen for the optimization of immunotherapeutic interventions in the old.  相似文献   

3.
Yersinia effectors target mammalian signalling pathways   总被引:8,自引:4,他引:4  
Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.  相似文献   

4.
The Immune Theory of Aging cannot explain the cause of immune decline. It is hypothesized that the pineal gland acting in utero and during neonatal life in altricial mammals serves as a component of the immune system. Evidence in support of the presence of a thymus-pineal axis is presented. It is postulated that the pineal gland carries a considerable burden of immunological defense during maturation of the thymus, and also acts in the programming of the immune system. By relating thymus and immune function to the pineal and its known role as a neuroendocrine transducer for the entrainment and control of biorhythms, a consilence is developed between the role of the immune system in senescence and the pineal function in biorhythmicity. The relationships developed thus permit an extension of the immune theory as regards causative mechanisms.  相似文献   

5.
The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.  相似文献   

6.
The failure of the immune system to provide protection against tumour cells is an important immunological problem. It is now evident that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control, as well as an important factor that limits the success of cancer immunotherapy. In recent years, it has become increasingly clear that defects in dendritic cells have a crucial role in non-responsiveness to tumours. This article focuses on the functional consequences and recently described mechanisms of the dendritic-cell defects in cancer.  相似文献   

7.
It is widely accepted that immune tolerance toward "self" is established by central and peripheral adaptations of the immune system. Mechanisms that have been demonstrated to play a role in the induction and maintenance of tolerance include thymic deletion of self-reactive T cells, peripheral T cell anergy and apoptosis, as well as thymic and peripheral induction of regulatory T cells. However, a large body of experimental findings cannot be rationalized solely based on adaptations of the immune system to its environment. Here we propose a new model termed Ecoimmunity, where the immune system and the tissue are viewed as two sides of a continuously active and co-evolving predator-prey system. Ecoimmunity views self-tolerance, not as an equilibrium in which autoimmunity is chronically suppressed, but as a symmetrical balanced conflict between the ability of immune cells to destroy tissue cells by numerous mechanisms, and the capacity of adapted tissue cells to avoid predation. This balance evolves during ontogeny, in parallel to immune adaptations, embryonic tissue cells adapt their phenotype to the corresponding immune activity by developing the ability to escape or modulate damaging local immune responses. This phenotypic plasticity of tissue cells is directed by epigenetic selection of gene expression pattern and cellular phenotype amidst an ongoing immune pressure. Thus, whereas some immune cells prey predominantly on pathogens and infected cells, self-reactive cells continuously prey on incompetent tissue cells that fail to express the adapted phenotype and resist predation. This model uses ecological generalization to reconcile current contradictory observations as well as classical enigmas related to both autoimmunity and to tolerance toward foreign tissues. Finally, it provides empirical predictions and alternative strategies toward clinical challenges.  相似文献   

8.
Chemotherapy and immunotherapy can be either synergistic or antagonistic modalities in the treatment of cancer. Cytotoxic chemotherapy not only affects the tumor but also targets dividing lymphocytes, the very cells that are required to develop an immune response. For this reason, chemo- and immunotherapy have been seen as antagonistic. However, cell death can be immunogenic and the way in which chemotherapeutic drug kills a tumor cell is likely to be an important determinant of how that dying cell interacts with the immune system and whether the interaction will lead to an immune response. When a cell dies as the result of infection, the immune system responds rapidly and the system of Toll-like receptors (TLR) plays a key role in this process. In this review, we will briefly summarize the intracellular signaling pathways that link TLR ligation with immune activation and we will address the questions where and how TLRs recognize their targets.  相似文献   

9.
An allergy is commonly understood to be an overreaction of the immune system to harmless substances that are misrecognised as foreign. This concept of allergy as an abnormal, misdirected immune response-a biological fault-stems from the idea that the immune system is an inherently defensive operation designed to protect the individual through an innate capacity to discriminate between the benign and toxic, or self and nonself. However, this definition of allergy represents a radical departure from its original formulation. Literally meaning 'altered reactivity', the term was coined in 1906 by Austrian paediatrician Clemens von Pirquet, to describe the fundamentally mutable nature of the immune response. This paper argues that the conventional interpretation of allergy-as-pathology derives from specific concepts of 'organism', 'response', and 'normal' immune function that have-for over a century-governed the perception and study of immune phenomena within immunology. Through an examination of Louis Pasteur's conceptualisation of the host body/microorganism relationship, I argue that immunology is founded on a view of the organism as a discrete, autonomous entity, and on a concomitant notion of the immune response as essentially reactive. Revisiting the concept of 'altered reactivity', this paper points to the fact that allergy was initially posited as a general theory of immune responsiveness and, importantly, one that poses a significant challenge to orthodox notions of immunopathology. It suggests that Pirquet's unique view of immune responsiveness presents an account of organismic or biological identity that encapsulates, rather than reduces, its ecological complexity.  相似文献   

10.
Animal hosts defend themselves against parasites by the antibodies produced by an immune system. It is an inherent assumption that parasites constitute the selection pressure that has given rise to and maintains the immune system. Thus, greater impact by parasites on host fitness should result in greater investment in immune function across species. We tested this prediction by using field estimates of parasite-induced nestling mortality in altricial birds as an estimate of the fitness cost of parasitism and the relative size of the spleen as an estimate of investment in immune function. The spleen is a peripheral lymphoid tissue that acts as the main site of lymphocyte differentiation and proliferation, and these B- and T-cells are involved in the production of humoral and cell-mediated immune responses. In a comparative study of 21 species of altricial birds we found a significant positive relationship between relative spleen size and parasite-induced mortality, accounting for a third of the variance, even when controlling for potentially confounding variables. This finding provides evidence for the level of investment in immune function being related to the natural selection pressure imposed by parasites.  相似文献   

11.
We approach the field of stress immunology from an ecological point of view and ask: why should a heavy physical workload, for example as a result of a high reproductive effort, compromise immune function? We argue that immunosuppression by neuroendocrine mechanisms, such as stress hormones, during heavy physical workload is adaptive, and consider two different ultimate explanations of such immunosuppression. First, several authors have suggested that the immune system is suppressed to reallocate resources to other metabolic demands. In our view, this hypothesis assumes that considerable amounts of energy or nutrients can be saved by suppressing the immune system; however, this assumption requires further investigation. Second, we suggest an alternative explanation based on the idea that the immune system is tightly regulated by neuroendocrine mechanisms to avoid hyperactivation and ensuing autoimmune responses. We hypothesize that the risk of autoimmune responses increases during heavy physical workload and that the immune system is suppressed to counteract this.  相似文献   

12.
It is generally accepted that the adaptive immune system is only present in vertebrates but not in invertebrates. Amphioxus is the most basal chordate and hence is an important reference to the evolution of the adaptive immune system. Here, a cDNA library of lipopolysaccharide-challenged amphioxus was constructed in order to identify immune genes. A total of 3024 expressed sequence tags (ESTs) were examined and 63 out of 398 annotated genes (16.3%) appeared related to immunity. Most of them encode cell adhesion molecules or signal proteins that are involved in immune responses. Although the key molecules such as TCR, MHC, Ig or VLR involved in the adaptive immune system were not identified in our database, we demonstrated the presence of histocompatibility-relevant genes and lymphocyte immune signaling-relevant genes. These findings support the statement that amphioxus presents some components that may be recruited by adaptive immune processes.  相似文献   

13.
HIV-1 can be considered an infection of the immune system, resulting in progressive and ultimately profound immune suppression. The availability of highly active antiretroviral therapy (HAART) has resulted in dramatic changes in the disease course in persons fortunate enough to have access to these medications, but long-term therapy is limited by the development of resistance as well as toxicities of the potent medication regimens. Emerging data indicate that individuals who have non-progressive clinical course control HIV-1 immunologically. This has bolstered hope that the immune response might be effectively augmented in persons with HIV infection. Recent data indicating that immediate treatment of acute infection leads to augmentation of antiviral immune responses have provided evidence that the immune system might be enhanced in certain situations. Therefore, investigation in the reconstitution of anti-HIV immune response in patients under HAART should provide encouragement for continuing to explore methods to obtain meaningful and durable immune enhancement as an adjunct to HAART in HIV-1 infection.  相似文献   

14.
Self-harm caused by an insect's innate immunity   总被引:1,自引:0,他引:1  
It has been a long-held assumption that the innate immune system of insects causes self-harm when used to combat an immune insult. We show empirically that this assumption is correct. Invertebrate innate immunity relies heavily on effector systems which, on activation, produce cytotoxins that kill pathogens. Reliance on these robust, fast-acting, generic killing mechanisms ensures a potent and rapid response to pathogen invasion, but has the potential disadvantage of causing self-damage. We show that the innate immune response against an immune insult produces measurable phenotypic and functional damage to self-tissue in the beetle Tenebrio molitor. This type of self-harm (autoreactivity) and the life-history implications that arise from it are important to understand evolutionary phenomena such as the dynamics between hosts and parasites as well as the nature of immune system costs.  相似文献   

15.
In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation.  相似文献   

16.
R Dantzer  K W Kelley 《Life sciences》1989,44(26):1995-2008
The old notion that stress exacerbates the progression of physical illness via its corticosteroid-mediated immunosuppressive effects must be revised. Experimental and clinical studies demonstrate that both laboratory and natural stressors alter the activities of lymphocytes and macrophages in a complex way that depends on the type of immune response, the physical and psychological characteristics of the stressor and the timing of stress relative to the induction and expression of the immune event. The influences of stress on immunity are mediated not only by glucocorticoids but also by catecholamines, endogenous opioids and pituitary hormones such as growth hormone. Sensitivity of the immune system to stress is not simply fortuitous but is an indirect consequence of the regulatory reciprocal influences that exist between the immune system and the central nervous system. The immune system receives signals from the brain and the neuroendocrine system via the autonomic nervous system and hormones and sends information to the brain via cytokines. These connections appear to be part of a long-loop regulatory feedback system that plays an important role in the coordination of behavioral and physiological responses to infection and inflammation.  相似文献   

17.
Age‐related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual’s age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade‐offs between ageing, immune response and sexual attractiveness.  相似文献   

18.
Vertebrates have evolved an adaptive immune system in addition to the ancestral innate immune system. It is often assumed that a trade-off between costs and benefits of defence governs the evolution of immunological defence, but the costs and benefits specific to the adaptive immune system are poorly known. We used genetically engineered mice lacking lymphocytes (i.e. mice without adaptive, but with innate, immunity) as a model of the ancestral state in the evolution of the vertebrate immune system. To investigate if the magnitude of adaptive defence is constrained by the energetic costs of producing lymphocytes etc., we compared the basal metabolic rate of normal and lymphocyte-deficient mice. We found that lymphocyte-deficient mice had a higher basal metabolic rate than normal mice with both innate and adaptive immune defence. This suggests that the evolution of the adaptive immune system has not been constrained by energetic costs. Rather, it should have been favoured by the energy savings associated with a combination of innate and adaptive immune defence.  相似文献   

19.
Modulation of the immune response by emotional stress   总被引:6,自引:0,他引:6  
The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as the capacity to generate a primary antibody response in vivo after immunization with sheep red blood cells. Our results demonstrate that exposure of rats to a single electric footshock (learning trial) or habituation to the passive avoidance apparatus, induces an increase of the immune response in vitro and in vivo. Thus, emotional stimuli seem to facilitate immunological responsiveness. However, when the animal is confronted with a conflict situation, as tested by the retention of the avoidance response after a single learning trial, the initially enhanced reactivity of the immune system decreases. It is concluded that the immune system is capable of reacting specifically and immediately to distinct psychological stimuli.  相似文献   

20.
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号