首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF); however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG) via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine–xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.  相似文献   

2.
Treatment of intracranial aneurysms by surgical clipping carries a risk of intraoperative ischemia, caused mainly by prolonged temporary occlusion of cerebral arteries. The objective of this study was to develop a near-infrared spectroscopy (NIRS) technique for continuous monitoring of cerebral blood flow (CBF) during surgery. With this approach, cerebral hemodynamics prior to clipping are measured by a bolus-tracking method that uses indocyanine green as an intravascular contrast agent. The baseline hemodynamic measurements are then used to convert the continuous Hb difference (HbD) signal (HbD = oxyhemoglobin - deoxyhemoglobin) acquired during vessel occlusion to units of CBF. To validate the approach, HbD signal changes, along with the corresponding CBF changes, were measured in pigs following occlusion of the common carotid arteries or a middle cerebral artery. For both occlusion models, the predicted CBF change derived from the HbD signal strongly correlated with the measured change in CBF. Linear regression of the predicted and measured CBF changes resulted in a slope of 0.962 (R(2) = 0.909) following carotid occlusion and 0.939 (R(2) = 0.907) following middle cerebral artery occlusion. These results suggest that calibrating the HbD signal by baseline hemodynamic measurements provides a clinically feasible method of monitoring CBF changes during neurosurgery.  相似文献   

3.
Methods for measuring cerebral blood volume (CBV) have traditionally used radioisotopes. More recently, near-infrared spectroscopy (NIRS) has been used to measure CBV by using a technique involving O(2) desaturation of cerebral tissue, where the observed change in the concentration of oxygenated hemoglobin is a marker of the volume of blood contained within the brain. A new integration method employing NIRS is described by using indocyanine green (ICG) as the intravascular marker. After bolus injection, concentration-time integrals of cerebral tissue ICG concentration ([ICG](tissue)) measured by NIRS are compared with corresponding integrals of the cerebral blood ICG concentrations ([ICG](blood)) estimated by high-performance liquid chromatography of peripheral blood samples with allowance for cerebral-to-large-vessel hematocrit ratio. It is shown that CBV = integral [ICG]tissue/[ICG]blood. Measurements in 10 adult volunteers gave a mean value of 1.1 +/- 0.39 (SD) ml/100 g illuminated tissue. This result, although lower than previous NIRS estimations, is consistent with the long extracerebral path of light in the adult head. Scaling of results is required to take into account this component of the optical pathlength.  相似文献   

4.
Liver blood flow and hepatic uptake of some indicator substances have been reported to fall with age in both rats and humans. We used an isolated liver system, which was perfused in one pass with hemoglobin free buffer, to investigate the effect of albumin concentration, buffer flow rate, and age upon hepatic clearance of the dye, indocyanine green. We measured the half-life of a bolus of indocyanine green given intravenously to male Sprague-Dawley rats aged 10 and 24 months and then examined its clearance in vitro using their isolated perfused livers. After perfusion, the livers were homogenized and separated into subcellular fractions. The mean liver weight declined significantly (young, 19.7 +/- 2.9 g vs. old, 13.9 +/- 2.6 g; p less than 0.02). In vivo the indocyanine green clearance was reduced in the aged rats (3.2 +/- 1.0 vs. 5.1 +/- 1.7 mL/min; p less than 0.05). In the isolated perfused liver system, extraction ratio showed an inverse curvilinear correlation with albumin concentration and buffer flow rate, but did not differ with age. Hepatic protein content and dye subcellular localization did not differ between the two groups. In conclusion, the fall in indocyanine green clearance in vivo is not paralleled by the ability of the organs to extract the dye in vitro, and likely reflects a decline in hepatic mass and blood flow.  相似文献   

5.
For the first time, we have studied the effects of manual acupuncture and of laser puncture on cerebral oxygenation in three healthy male volunteers using transcranial near-infrared spectroscopy (NIRO 300, Hamamatsu Photonics, Japan). The results indicate that acupuncture of specific acupuncture points leads to an increase in oxygenated haemoglobin and in the tissue oxygenation index. However, needling and laser puncture at placebo points does not produce the same effect on cerebral oxygenation. This fact provides further proof of specific quantifiable effects of acupuncture on the brain.  相似文献   

6.
The relative amount of regional cerebral oxygen transport was compared between different preterm infants by performing measurements of cerebral blood flow velocity, mean arterial blood pressure, whole blood viscosity and haemoglobin content for each individual. In addition the percentage of fetal haemoglobin was determined. On 25 occasions measurements of fetal haemoglobin and cerebral oxygen transport have been performed prior to and following a blood transfusion with adult red blood cells. Comparison of the data for cerebral oxygen transport suggests that the actual amount of cerebral oxygen transport is lowest at fetal haemoglobin levels below 30% and will increase progressively as soon as the percentage of fetal haemoglobin rises about 30%. Thus, at increasing fetal haemoglobin levels, cerebral haemodynamic mechanisms in the human neonate cause elevations of regional cerebral blood flow and oxygen transport. The found increase of cerebral blood flow and oxygen transport at high fetal haemoglobin levels will minimize the impeded dissociation and delivery of oxygen to brain tissues.  相似文献   

7.
Abstract: The uptake of compounds by the brain depends upon cerebral blood flow. To determine the normal blood flow-cerebral extraction relationship, a method for rapid, simultaneous measurement of cerebral blood flow and brain extraction was developed and applied to blood-brain leucine transfer. Awake rats were injected intravenously with a mixture of n-[14C]butanol and [3H]leucine. The quantities of indicators accumulated over the following 5–12 s in brain and in a sample of arterial blood withdrawn at a known rate were used to determine the flux of butanol and leucine into brain. Butanol extraction was assessed independently by measuring arterial and cerebral venous concentrations of the indicator after a bolus injection. Cerebral blood flow was equal to the ratio of butanol flux into brain to butanol extraction by brain; leucine extraction was then calculated as the ratio of leucine influx to cerebral blood flow. Leucine extraction by brain and cerebral blood flow were shown to be related exponentially. The maximum velocity of active leucine transport was virtually the same at flows of 150 and 400 ml/100 g/min. The present method is theoretically applicable to the measurement of the extraction of any compound from blood by brain. By measuring the noimal blood flow-extraction relationship, one can differentiate changes in extraction secondary to altered flow from changes intrinsic to pathologic conditions with inconstant cerebral blood flow.  相似文献   

8.
A number of medical applications of near-infrared spectroscopy are growing closer to clinical acceptance, and new techniques involving both spectroscopy and imaging are evolving rapidly. In vivo spectroscopy and, more recently, imaging techniques are largely based upon optical electronic transitions involving the metal centers of hemoglobin (blood), myoglobin (muscle) and cytochrome aa3 (mitochondria). The wide variety of near-IR based applications includes heart and stroke research, monitoring cerebral oxygenation of premature babies, and 'functional activation' (response of brain to mental tasks). All of these applications are founded upon changes in hemoglobin O2 saturation; these changes are monitored by following trends in the near-infrared absorptions of deoxyhemoglobin (760 nm) and oxyhemoglobin (920 nm). The same absorptions provide a basis for imaging regional variations in blood oxygenation. This report presents and discusses examples, both from the literature and from our recent work, of near-infrared spectroscopy and imaging in medical applications.  相似文献   

9.
Using a newly developed perfused rat brain model, we examined direct effects of each change in cerebral blood flow (CBF) and oxygen metabolic rate on cerebral hemoglobin oxygenation to interpret near-infrared spectroscopy signals. Changes in CBF and total hemoglobin (tHb) were in parallel, although tHb showed no change when changes in CBF were small (< or =10%). Increasing CBF caused an increase in oxygenated hemoglobin (HbO(2)) and a decrease in deoxygenated hemoglobin (deoxy-Hb). Decreasing CBF was accompanied by a decrease in HbO(2), whereas changes in direction of deoxy-Hb were various. Cerebral blood congestion caused increases in HbO(2), deoxy-Hb, and tHb. Administration of pentylenetetrazole without increasing the flow rate caused increases in HbO(2) and tHb with a decrease in deoxy-Hb. There were no significant differences in venous oxygen saturation before vs. during seizure. These results suggest that, in activation studies with near-infrared spectroscopy, HbO(2) is the most sensitive indicator of changes in CBF, and the direction of changes in deoxy-Hb is determined by the degree of changes in venous blood oxygenation and volume.  相似文献   

10.
This paper investigates the applicability of cerebral blood flow in evaluating the technological adaptability for operating industrial products. The procedure of the experiment was explained to the subjects and informed consent was obtained from them. Twenty male and twenty female subjects (19-22 yrs) operated the destination setting task of a car navigation system. Subjects were divided into two sub groups to operate tasks of model A and model B of a car navigation system. Operation time of tasks and cerebral blood flow of frontal region were measured during tasks. Non-invasive measuring of regional cerebral blood flow was estimated by measuring deoxygenated hemoglobin, oxygenated hemoglobin, and total haemoglobin using the time resolved spectroscopy (TRS). Females were faster than males in operating the task of setting the destination searched by street address. Total haemoglobin of male subjects was significantly higher than that of females during resting and tasks. Changes of cerebral blood flow were observed during operating a car navigation system. In this paper we discussed the possibility of physiological evaluation for technological adaptability by means of the performance and brain hemodynamics measurement.  相似文献   

11.
Multi-wavelength, differential spectroscopy was used to examine the effects of transient hypoxia on oxygen delivery and intracellular utilization in the brain of developing rats. The in vivo redox status of cytochrome a,a3 was compared simultaneously with changes in relative haemoglobin saturation and blood volume in the cerebral cortex during lowered FiO2. During hypoxia, neonates maintained their intracellular cytochrome a,a3 redox state as well as did adults, but did so through unusual characteristics, including: (1) maintenance of haemoglobin oxygenation at lower FiO2; (2) regulation of cerebral blood volume at blood pressures below the point at which autoregulation would fail in the adult; and (3) the capacity to tolerate a greater reduction of cytochrome a,a3 relative to haemoglobin desaturation at lowered FiO2. These data suggest that mechanisms which protect the neonate from hypoxic insult involve preservation of oxygen delivery, increased respiratory compensation for metabolic acidosis, and maintenance of cellular energy requirements predominantly through anaerobic metabolism.  相似文献   

12.
Hypotension and shock are risk factors for death, renal insufficiency, and stroke in preterm neonates. Goal-directed neonatal hemodynamic management lacks end-organ monitoring strategies to assess the adequacy of perfusion. Our aim is to develop a clinically viable, continuous metric of renovascular reactivity to gauge renal perfusion during shock. We present the renovascular reactivity index (RVx), which quantifies passivity of renal blood volume to spontaneous changes in arterial blood pressure. We tested the ability of the RVx to detect reductions in renal blood flow. Hemorrhagic shock was induced in 10 piglets. The RVx was monitored as a correlation between slow waves of arterial blood pressure and relative total hemoglobin (rTHb) obtained with reflectance near-infrared spectroscopy (NIRS) over the kidney. The RVx was compared with laser-Doppler measurements of red blood cell flux, and renal laser-Doppler measurements were compared with cerebral laser-Doppler measurements. Renal blood flow decreased to 75%, 50%, and 25% of baseline at perfusion pressures of 60, 45, and 40 mmHg, respectively, whereas in the brain these decrements occurred at pressures of 30, 25, and 15 mmHg, respectively. The RVx compared favorably to the renal laser-Doppler data. Areas under the receiver operator characteristic curves using renal blood flow thresholds of 50% and 25% of baseline were 0.85 (95% CI, 0.83-0.87) and 0.90 (95% CI, 0.88-0.92). Renovascular autoregulation can be monitored and is impaired in advance of cerebrovascular autoregulation during hemorrhagic shock.  相似文献   

13.
Measurement of respiratory muscle blood flow (RMBF) in humans has important implications for understanding patterns of blood flow distribution during exercise in healthy individuals and those with chronic disease. Previous studies examining RMBF in humans have required invasive methods on anesthetized subjects. To assess RMBF in awake subjects, we applied an indicator-dilution method using near-infrared spectroscopy (NIRS) and the light-absorbing tracer indocyanine green dye (ICG). NIRS optodes were placed on the left seventh intercostal space at the apposition of the costal diaphragm and on an inactive control muscle (vastus lateralis). The primary respiratory muscles within view of the NIRS optodes include the internal and external intercostals. Intravenous bolus injection of ICG allowed for cardiac output (by the conventional dye-dilution method with arterial sampling), RMBF, and vastus lateralis blood flow to be quantified simultaneously. Esophageal and gastric pressures were also measured to calculate the work of breathing and transdiaphragmatic pressure. Measurements were obtained in five conscious humans during both resting breathing and three separate 5-min bouts of constant isocapnic hyperpnea at 27.1 +/- 3.2, 56.0 +/- 6.1, and 75.9 +/- 5.7% of maximum minute ventilation as determined on a previous maximal exercise test. RMBF progressively increased (9.9 +/- 0.6, 14.8 +/- 2.7, 29.9 +/- 5.8, and 50.1 +/- 12.5 ml 100 ml(-1) min(-1), respectively) with increasing levels of ventilation while blood flow to the inactive control muscle remained constant (10.4 +/- 1.4, 8.7 +/- 0.7, 12.9 +/- 1.7, and 12.2 +/- 1.8 ml 100 ml(-1) min(-1), respectively). As ventilation rose, RMBF was closely and significantly correlated with 1) cardiac output (r = 0.994, P = 0.006), 2) the work of breathing (r = 0.995, P = 0.005), and 3) transdiaphragmatic pressure (r = 0.998, P = 0.002). These data suggest that the NIRS-ICG technique provides a feasible and sensitive index of RMBF at different levels of ventilation in humans.  相似文献   

14.
The capacity of brain to dephosphorylate glucose-6-phosphate has been established, but the magnitude and significance of this capacity in vivo are debated, particularly in regard to dephosphorylation of the glucose analog 2-deoxyglucose. We now report results of external measurement in the brains of conscious rats with simultaneous resolution and quantification of both 2-deoxyglucose and its phosphorylated product by nuclear magnetic resonance (NMR) techniques that used 2-[6-13]deoxyglucose together with proton-decoupled 13C surface-coil spectroscopy. As NMR techniques require large doses of 2-deoxyglucose, a dose comparison was first made using decay curves of total label after tracer doses of 2-[14C]deoxyglucose without versus with unlabeled deoxyglucose at 500 mg/kg (the NMR dose). Similar cerebral half-lives for the two doses were found, and no behavioral evidence for toxicity of the NMR dose was seen. In vivo NMR monitoring of conscious rats showed that the analog reached maximal cerebral concentration within 10 min of the intravenous bolus and decayed with a half-life of 29 +/- 7 min (n = 4; mean +/- SEM), whereas 2-deoxyglucose-6-phosphate reached peak concentration between 30 and 40 min and decayed with a half-life of 2.1 +/- 0.3 h, equivalent to a fractional loss of 0.8%/min. Thirty-one percent (+/- 5%) of the total analog pool (which showed a half-life of 1.4 h) consisted of 2-deoxyglucose at 45 min after the bolus. The results support an active but limited role for dephosphorylation by normal brain in glucose analog (and potentially glucose) metabolism in the unstimulated conscious rat and a wide concentration range for the metabolic operations involved.  相似文献   

15.
Summary The heads of rats were irradiated by 4 MeV electrons in doses 90, 180, and 360 Gy. The observed times of deaths ranged 120–600, 60–420, and 150–370 min after 90, 180, and 360 Gy, respectively. A dose dependent decrease of the brain uptake index of haloperidol was observed 1 and 3 h post radiation. On the other hand an increased brain uptake index was found for stobadin after head irradiation with doses of 180 and 360 Gy. Regional cerebral blood flow, blood pressure, and heart rate were not significantly altered in the period following irradiation with 180 Gy. The observed changes in blood-brain barrier (BBB) permeability seem to be the result of the damaged function of morphological structures forming the BBB rather than altered regional blood flow.  相似文献   

16.
To explore the feasibility of in vivo 17O NMR for the estimation of cerebral blood flow and oxygen consumption, in vivo 17O NMR spectroscopy and imaging were employed in animal models. In the spectroscopy, the changes in the 17O NMR signal intensity after the injection of H2(17)O and the inhalation of 17O2 gas were obtained every 4 seconds with sufficient signal-to-noise ratios for the quantification of cerebral blood flow and oxygen consumption. In the imaging, although the time and spatial resolutions were insufficient for the quantification of H2(17)O, 17O NMR images of rabbit brain could be obtained, indicating that it is possible to map cerebral blood flow and oxygen consumption by 17O NMR imaging.  相似文献   

17.
The cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTZ, procysteine) can raise cysteine concentration, and thus glutathione levels, in some tissues. OTZ has therefore been proposed as a prodrug for combating oxidative stress. We have synthesized stable isotope labeled OTZ (i.e. L-2-oxo-[5-(13)C]-thiazolidine-4-carboxylate, (13)C-OTZ) and tracked its uptake and metabolism in vivo in rat brain by (13)C magnetic resonance spectroscopy. Although uptake and clearance of (13)C-OTZ was detectable in rat brain following a bolus dose by in vivo spectroscopy, no incorporation of isotope label into brain glutathione was detectable. Continuous infusion of (13)C-OTZ over 20 h, however, resulted in (13)C-label incorporation into glutathione, taurine, hypotaurine and lactate at levels sufficient for detection by in vivo magnetic resonance spectroscopy. Examination of brain tissue extracts by mass spectrometry confirmed only low levels of isotope incorporation into glutathione in rats treated with a bolus dose and much higher levels after 20 h of continuous infusion. In contrast to some previous studies, bolus administration of OTZ did not alter brain glutathione levels. Even a continuous infusion of OTZ over 20 h failed to raise brain glutathione levels. These studies demonstrate the utility of in vivo magnetic resonance for non-invasive monitoring of antioxidant uptake and metabolism in intact brain. These types of experiments can be used to evaluate the efficacy of various interventions for maintenance of brain glutathione.  相似文献   

18.
Methylmercuric chloride was given to rats in a neurotoxic dose regimen (six daily doses of 8 mg kg-1 p.o.). During the silent (asymptomatic) phase of intoxication, the rates of cerebral glucose influx and cerebral glucose phosphorylation were measured simultaneously using 2-deoxyglucose. Regional cerebral blood flow was also measured using iodoantipyrine. The unidirectional flux of glucose into brain was not affected by methylmercury, and differences in the rates of glucose phosphorylation from region to region remained coupled to the regional cerebral blood flow. However, the blood flow was reduced throughout the brain, an observation suggesting that the operational level of metabolically regulated blood flow had been reset. Thus, in spite of a generalised reduction in blood flow, there was no indication of impaired cerebral glucose supply or utilization during the silent phase of methylmercury intoxication.  相似文献   

19.
Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.  相似文献   

20.
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号