首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene (aman6) encoding endo-1,6-alpha-D-mannanase, a yeast mannan backbone degrading enzyme from Bacillus circulans was cloned. The putative aman6 was 1,767 base pairs long and encoded a mature 1,6-alpha-D-mannanase protein of 589 amino acids and a signal peptide of 36 amino acids. The purified mature 1,6-alpha-D-mannanase from the Escherichia coli transformant showed 61-kDa protein, and N-terminal amino acid sequence and other general properties of the recombinant enzyme were identical to those of 1,6-alpha-D-mannanase from Bacillus circulans TN-31.  相似文献   

2.
MANB36, a secrete endo-beta-1,4-D-mannanase produced by Bacillus subtilis B36, was purified to homogeneity from a culture supernatant and characterized. The optimum pH value for the mannanase activity of MANB36 is 6.4 and the optimum temperature is 50 degrees C. The enzyme activity of MANB36 is remarkably thermostable at 60 degrees C and the specific activity of MANB36 is 927.84 U/mg. Metal cations (except Hg2+ and Ag+), EDTA and 2-mercaptoethanol (2-ME) have no effects on enzyme activity. This enzyme exhibits high specificity with the substituted galactomannan locust bean gum (LBG). The gene encoding for MANB36, manB36, was cloned by PCR and sequenced. manB36 contains a single open reading frame (ORF) consisting of 1104 bp that encodes a protein of 367 amino acids. The predicted molecular weight of 38.13 kDa, calculated by the deduced protein of the gene manB36 without signal peptide, coincides with the apparent molecular weight of 38.0 kDa of the purified MANB36 estimated by SDS-PAGE. The mature protein of MANB36 has been expressed in Escherichia coli BL21 and the expressed mannanase has normal bioactivity.  相似文献   

3.
Chitinase A of Streptomyces cyaneus SP-27 or chitinase I of Bacillus circulans KA-304 showed the protoplast-forming activity when combined with alpha-1,3-glucanase of B. circulans KA-304. The gene of chitinase A was cloned. It consisted of 903 nucleotides encoding 301 amino acid residues, including a putative signal peptide (35 amino acid residues). The deduced N-terminal moiety of chitinase A showed sequence homology with the chitin-binding domain of chitinase F from Streptomyces coelicolor and chitinase 30 from Streptomyces olivaceoviridisis. The C-terminal moiety also showed high sequence similarity to the catalytic domain of several Streptomyces family 19 chitinases as well as that of chitinase I of B. circulans KA-304. Recombinant chitinase A was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the recombinant enzyme were almost the same as those of chitinase A purified from a culture filtrate of S. cyaneus SP-27. The recombinant enzyme was superior to B. circulans KA-304 chitinase I not only in respect to protoplast forming activity in a mixture containing alpha-1,3-glucanase, but also to antifungal activity and powder chitin-hydrolyzing activity.  相似文献   

4.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity. The gene of alpha-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of alpha-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of alpha-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (alpha-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases.The recombinant alpha-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant alpha-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-beta-D-thiogalactopyranoside. The recombinant alpha-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.  相似文献   

5.
Several strains of thermophilic bacteria containing maleate cis-trans isomerase were isolated from soil samples and identified as Bacillus stearothermophilus, Bacillus circulans, Bacillus brevis, and Deleya halophila. The maleate cis-trans isomerase was purified and characterized from one of the isolated strains, B. stearothermophilus MI-102. The purified enzyme of strain MI-102 showed higher thermal stability than the enzyme of a mesophile, Alcaligenes faecalis IFO13111. The seven maleate cis-trans isomerase genes (maiA) of thermophile were cloned and sequenced. B. stearothemophilus MI-102 MaiA has 67% amino acid identity with A. faecalis MaiA. All eight amino acid sequences of maiA gene products had significant conserved regions containing cysteine residues, which were previously suggested to be involved in an active site of the enzyme. To probe the catalytic mechanism, three cysteine residues in the conserved regions of A. faecalis MaiA were replaced with serine by site-directed mutagenesis. The results suggest that Cys80 and Cys198 play important roles in the enzyme activity.  相似文献   

6.
7.
protein (Pa-AFP) with molecular weight about 4 kD was purified from the seeds of Phytolacca americana L. , which obviously inhibits the growth of Rhizoctonia solani Kiihn in vitro. The authors isolated mRNA from the seeds of pokeberry and designed a degenerate PCR primer according to the N-terminal sequence of the purified protein. The full-length cDNA encoding Pa-AFP was cloned by RT-PCR and 5'-RACE and sequenced. The deduced amino acid sequence indicates that a preprotein with 65 amino acid residues is firstly translated and then processed to a mature protein with 38 amino acids. The DNA encoding the mature protein was subcloned into expression vector pGEX-4T1, and expressed efficiently in E. coli BL21 as a GST- Pa-AFP fusion protein. The fusion protein was purified by glutathione-Sepharose 4B affinity colmnn chromatography. The purified fusion protein was specifically digested by thrombin and the Pa-AFP was further purified by filtration column chromatography.  相似文献   

8.
Endo-beta-1,4-glucanase genes from Bacillus circulans and from B. polymyxa were cloned by direct expression by using bacteriophage M13mp9 as the vector. The enzymatic activity of the gene products was detected by using either the Congo red assay or hydroxyethyl cellulose dyed with Ostazin Brilliant Red H-3B. The B. circulans and B. subtilis PAP115 endo-beta-1,4-glucanase genes were shown to be homologous by the use of restriction endonuclease site mapping, DNA-DNA hybridization, S1 nuclease digestion after heteroduplex formation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein products. Analysis of the nucleotide sequence of 3.1 kilobase pairs of cloned B. polymyxa DNA revealed two convergently transcribed open reading frames (ORFs) consisting of 398 codons (endoglucanase) and 187 codons (ORF2) and separated by 374 nucleotides. The coding region of the B. polymyxa endoglucanase gene would theoretically produce a 44-kilodalton preprotein. Expression of the B. polymyxa endoglucanase in Escherichia coli was due to a fusion of the endoglucanase gene at codon 30 with codon 9 of the lacZ alpha-peptide gene. The B. polymyxa endoglucanase has 34% amino acid similarity to the Clostridium thermocellum celB endoglucanase sequence but very little similarity to endoglucanases from other Bacillus species. ORF2 has 28% amino acid similarity to the NH2-terminal half of the E. coli lac repressor protein, which is responsible for DNA binding.  相似文献   

9.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80 degrees C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

10.
The gene coding for an extracellular lipase of Bacillus licheniformis was cloned using PCR techniques. The sequence corresponding to the mature lipase was subcloned into the pET 20b(+) expression vector to construct a recombinant lipase protein containing 6 histidine residues at the C-terminal. High-level expression of the lipase by Escherichia coli cells harbouring the lipase gene-containing expression vector was observed upon induction with IPTG at 30 degrees C. A one step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified enzyme was 130 units/mg with p-nitrophenyl-palmitate as substrate. The enzyme showed maximum activity at pH 10-11.5 and was remarkably stable at alkaline pH values up to 12. The enzyme was active toward p-nitrophenyl esters of short to long chains fatty acids but with a marked preference for esters with C(6) and C(8) acyl groups. The amino acid sequence of the lipase shows striking similarities to lipases from Bacillus subtilis and Bacillus pumilus. Based on the amino acid identity and biochemical characteristics, we propose that Bacillus lipases be classified into two distinct subfamilies of their own.  相似文献   

11.
KA-prep, a culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune, has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, isolated from KA-prep, brings about the protoplast-forming activity. The gene of chitinase I was cloned from B. circulans KA-304 into pGEM-T Easy vector. The gene consists of 1,239 nucleotides, which encodes 413 amino acids including a putative signal peptide (24 amino acid residues). The molecular weight of 40,510, calculated depending on the open reading frame without the putative signal peptide, coincided with the apparent molecular weight of 41,000 of purified chitinase I estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The C-terminal domain of the deduced amino acid sequence showed high similarity to that of family 19 chitinases of actinomycetes and other organisms, indicating that chitinase I is the first example of family 19 chitinase in Bacillus species. Recombinant chitinase I without the putative signal peptide was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the purified recombinant enzyme were almost the same as those of chitinase I purified from KA-prep, and showed the protoplast-forming activity when it was combined with alpha-1,3-glucanase from KA-prep. Recombinant chitinase I as well as the native enzyme inhibited hyphal extension of Trichoderma reesei.  相似文献   

12.
Three mutanase (alpha-1,3-glucanase)-producing microorganisms isolated from soil samples were identified as a relatives of Paenibacillus. A mutanase was purified to homogeneity from cultures of each, and the molecular masses of the purified enzymes were approximately 132, 141, and 141kDa, respectively. The corresponding three genes for mutanases were cloned by PCR using primers designed from each N-terminal amino acid sequence. Another mutanase-like gene from one strain was also cloned by PCR using primers designed from conserved amino acid sequences among known mutanases. Consequently, four mutanase-like genes were sequenced. The genes contained long open reading frames of 3411 to 3915bp encoding 1136 to 1304 amino acids. The deduced amino acid sequences of the mutanases showed relatively high similarity to those of a mutanase (E16590) from Bacillus sp. RM1 with 46.9% to 73.2% identity and an alpha-1,3-glucanase (AB248056) from Bacillus circulans KA-304 with 46.7% to 70.4% identity. Phylogenetic analysis based on the amino acid sequences of the enzymes showed bacterial mutanases form a new family between fungal mutanases (GH family 71) and Streptomycetes mycodextranases (GH family 87).  相似文献   

13.
The gene encoding a thermostable peroxidase was cloned from the chromosomal DNA of Bacillus stearothermophilus IAM11001 in Escherichia coli. The nucleotide sequence of the 3.1-kilobase EcoRI fragment containing the peroxidase gene (perA) and its flanking region was determined. A 2,193-base-pair open reading frame encoding a peroxidase of 731 amino acid residues (Mr, 82,963) was observed. A Shine-Dalgarno sequence was found 9 base pairs upstream from the translational starting site. The deduced amino acid sequence coincides with those of the amino terminus and four peptides derived from the purified peroxidase of B. stearothermophilus IAM11001. E. coli harboring a recombinant plasmid containing perA produced a large amount of thermostable peroxidase which comigrated on polyacrylamide gel electrophoresis with the B. stearothermophilus peroxidase. The peroxidase of B. stearothermophilus showed 48% homology in the amino acid sequence to the catalase-peroxidase of E. coli.  相似文献   

14.
15.
Degenerate primers were designed based on all possible sequences of the N-terminal and C-terminal regions of Delonix regia trypsin inhibitor (DrTI). Five hundred sixty-one bp of polymerase chain reaction (PCR) product was amplified using the above degenerate primers and genomic DNA and cDNA of Delonix regia as a template. The amplified PCR products were cloned and sequenced. DNA sequence analysis of cDNA and genomic clones of DrTI have the same nucleotide sequence in the coding region, and manifested a genomic clone without intervening sequences in the coding region. The amino acid sequence deduced from the DrTI genomic and cDNA clones agreed with that identified via amino acid sequencing analysis, except that two amino acid residues, Ser and Lys, existed between residues Lys141 and Ser142. DrTI open reading frame was then amplified and cloned in-frame with GST in pGEX4T-1 and overexpressed in Escherichia coli to yield a glutathione S-transferase (GST)-fusion protein with a calculated molecular mass of about 45 kDa. The recombinant DrTI (reDrTI) was derived by treating the GST-DrTI fusion protein with thrombin. Both the reDrTI and GST-DrTI fusion protein exhibited a strong identical inhibitory effect on trypsin activity.  相似文献   

16.
Cho EK  Choi IS  Choi YJ 《BMB reports》2011,44(3):193-198
The chitinase-producing strain SC081 was isolated from Korean traditional soy sauce and identified as Bacillus atrophaeus based on a phylogenetic analysis of the 16S rDNA sequence and a phenotypic analysis. A gene encoding chitinase from B. atrophaeus SC081 was cloned in Escherichia coli and was named SCChi-1 (GQ360078). The SCChi-1 nucleotide sequences were composed of 1788 base pairs and 596 amino acids, which were 92.6, 89.6, 89.3, and 78.9% identical to those of Bacillus subtilis (ABG57262), Bacillus pumilus (ABI15082), Bacillus amyloliquefaciens (ABO15008), and Bacillus licheniformis (ACF40833), respectively. A recombinant SCChi-1 containing a hexahistidine tag at the amino- terminus was constructed, overexpressed, and purified in E. coli to characterize SCChi-1. H(6)SCChi-1 revealed a hydrolytic band on zymograms containing 0.1% glycol chitin and showed the highest lytic activity on colloidal chitin and acidic chitosan. The optimal temperature and pH for chitinolytic activity were 50°C and pH 8.0, respectively.  相似文献   

17.
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.  相似文献   

18.
The manB gene, coding for a unique beta-mannosidase (MANB) of Aspergillus aculeatus, was cloned from genomic and cDNA libraries, and sequenced. The gene consists of 2,811 bp encoding a polypeptide of 937 amino acid residues with a molecular mass of 104,214 Da. The A. aculeatus MANB shared amino acid sequence identity with MANB of human (24%), goat (24%), bovine (24%), and Caenorhabditis elegans (22%). When the A. aculeatus MANB was compared with other related enzymes, a Glu residue corresponding to the active site identified by the Escherichia coli beta-galactosidase and the human beta-guclonidase was conserved. This is the first fungal gene that encodes MANB.  相似文献   

19.
20.
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. In this work, hepcidin was expressed in Escherichia coli as a 10.5 kDa fusion protein (His-hepcidin) with a N-terminal hexahistidine tag. The expressed His-hepcidin existed in the form of inclusion bodies and was purified by IMAC under denaturation condition. Since the fusion partner for hepcidin did not contain other cysteine residues, the formation of disulfide bonds was performed before the His-tag was removed. Then, the oxidized His-hepcidin monomer was separated from protein multimers through gel filtration. Following monomer refolding, hepcidin was cleaved from fusion protein by enterokinase and purified with reverse-phase chromatography. The recombinant hepcidin exhibited obvious antibacterial activity against Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号