首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
东亚小花蝽对西方花蓟马和二斑叶螨的捕食选择性   总被引:4,自引:0,他引:4  
孙晓会  徐学农  王恩东 《生态学报》2009,29(11):6285-6291
多食性天敌对猎物的捕食选择性及猎物密度对天敌捕食的干扰作用直接影响到天敌对不同猎物的控制作用.在实验室条件下研究了东亚小花蝽对西方花蓟马和/或二斑叶螨不同虫态的捕食选择性,以及两猎物中一种猎物的密度变化对小花蝽取食另一种猎物的影响.结果如下:东亚小花蝽5龄若虫和成虫对西方花蓟马2龄若虫的捕食选择性均强于对其成虫,对二斑叶螨的选择性为雌成螨>若螨>幼螨.实验中西方花蓟马2龄若虫是东亚小花蝽最喜好的虫态.二斑叶螨雌成螨密度固定为60头/19.63cm2,西方花蓟马若虫密度从10增加到60时显著地减少了东亚小花蝽对二斑叶螨的取食.反之,固定西方花蓟马同样密度,增加二斑叶螨密度却没有显著改变小花蝽对西方花蓟马的取食.此结果进一步表明,西方花蓟马是东亚小花蝽更喜好的猎物.  相似文献   

2.
In theory, selection favours predators that select prey in order to maximise reproductive success. We studied the association between preference and performance of the generalist predator Orius laevigatus with respect to two prey species: spider mites ( Tetranychus urticae ) and western flower thrips ( Frankliniella occidentalis ). Under ample prey supply, the predators had higher maximum reproductive success (measured as intrinsic population growth rate r ) on thrips than on spider mites; hence thrips represent a higher prey quality to the bugs. This was at odds with the observed preference of the predatory bug for plants (patches) with high densities of spider mites to plants with moderate densities of thrips in release-recapture experiments. Thus, prey quality does not suffice to explain the preference of predators for plants with prey. The quality of a patch as an oviposition site (i.e. the number of eggs produced on a patch per bug per day) also did not match preference patterns. Hence, patch preference was not correlated to prey quality or oviposition rate on prey patches. However, patch productivity, i.e. the total number of offspring surviving until adulthood that can be produced by one female on a patch, was correlated with preference. This was further tested by offering the predators a choice between plants with high densities of spider mites and plants with high densities of thrips in an independent set of release-recapture experiments. These two types of prey patches were found equivalent in terms of patch productivity. Indeed, the predators showed no preference for either of the two types of patches, which is in agreement with our predictions. This suggests that the predatory bugs select patches based on patch productivity rather than on prey quality or oviposition rate on a patch.  相似文献   

3.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   

4.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), are competitors with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), for plant resources and potential predators on spider mites when the opportunity arises. Which interaction predominates may depend on relative population densities and individual species’ responses to the plants on which they co‐occur. We examined interactions between populations of thrips and spider mites on several cultivars of two bedding plants: impatiens (Impatiens wallerana Hook.f) cultivars ‘Impulse Orange’ and ‘Cajun Carmine’, and ivy geranium [Pelargonium peltatum (L.) L’Her ex Aiton] cultivars ‘Sybil Holmes’ and ‘Amethyst 96’. Four combinations of thrips and mite numbers were studied: thrips alone, mites alone, and two densities of thrips and mites together. We compared population numbers after 4 weeks. Overall, mite numbers increased more rapidly than thrips did, but both species increased more rapidly on impatiens than on ivy geraniums. Between impatiens cultivars, thrips and mites increased more slowly on ‘Cajun Carmine’ (i.e., it was more resistant) than on ‘Impulse Orange’. On ivy geraniums, spider mites increased more slowly on ‘Sybil Holmes’ than on ‘Amethyst 96’ but the reverse was the case for thrips. Regardless of plant species or cultivar, thrips had a strong negative effect on spider mites whenever they co‐occurred, suppressing mite population growth by around 50% compared to when mites were alone. However, the effect of spider mites on western flower thrips depended on the quality of the plant species. On impatiens, thrips co‐occurring with spider mites increased slightly more than thrips alone did, while on ivy geranium mites had a small negative effect on thrips. Contrary to expectations, thrips had a larger negative impact on spider mites on plants that were more susceptible to thrips than they did on plants more resistant to thrips. We suggest that host plants mediate the interaction between an omnivore and its herbivorous prey not only by altering individual diet choice but by changing the relative population dynamics of each species.  相似文献   

5.
The deutonymphs of Allothrombium pulvinum Ewing (Acari: Trombidiidae) are among the most important natural enemies of spider mites in North, North East and West Iran. In this study, maximum predation rate and preference experiments were conducted with A. pulvinum deutonymphs on apple leaf discs, to determine their preference for either of two spider mite species: Amphitetranychus viennensis (Zacher) and Tetranychus urticae Koch (Acari: Tetranychidae). Maximum predation rate tests showed that the predatory mite consumed more eggs and females of T. urticae than of A. viennensis. Furthermore, the Manly’s preference index for eggs and females of T. urticae confirmed that T. urticae were the preferred prey. The functional response of A. pulvinum deutonymphs on females of T. urticae was examined over a 24-h period. Predation of A. pulvinum deutonymphs presented with females of T. urticae followed a type III functional response. Estimated handling time for the predatory mites was 4.51 h and attack coefficient b, which describes the changes in attack rate with prey densities in a type III functional response, was 0.021.  相似文献   

6.
In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.  相似文献   

7.
Soil-dwelling predatory mites are natural enemies of various soil pest insects and mites. Both Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) are commercialized natural enemies of thrips, but there is little information on the predation rate of these predatory mites on different thrips species. We compared their predation capacities on three thrips species, Frankliniella occidentalis, F. intonsa, and Thrips palmi, which are major pests of various horticultural plants. The predatory rate of G. aculeifer was higher than that of S. scimitus. Both predator species fed on more T. palmi thrips than F. occidentalis or F. intonsa thrips, which may be attributable to the smaller body size of T. palmi than the other thrips. Predation rates of female adults were 2.6–2.8 times higher than those of deutonymphs in both species. Predation rates were not separated according to the various developmental stages (i.e., second instar larva, pupa, or adult) of thrips; however, deutonymphs fed on fewer adults than larvae or pupae of F. occidentalis. Our results suggest that both G. aculeifer and S. scimitus are active predators that can prey during any of their developmental stages and on any species of thrips tested.  相似文献   

8.
The effectiveness of inoculative releases of the mirid predator Dicyphus hesperus Knight for control of Frankliniella occidentalis (Pergande) on greenhouse tomatoes was evaluated in terms of suppression of the population densities of F. occidentalis and associated fruit damage in the presence of the predator over two seasonal trials. An inoculative release of one D. hesperus per plant (approximately 0.1:10 predator:prey ratio) at a high F. occidentalis population density (140 thrips per plant) suppressed the thrips population density to a significantly lower level, compared with the nonrelease greenhouse, but not below a thrips level that caused economic fruit damage. As the predator:prey ratio increased to approximately 0.5:10 D. hesperus:F. occidentalis, the mean percentage of the thrips-damaged fruit in the D. hesperus release greenhouse decreased to 1.6%. However, the amount of fruit feeding by D. hesperus was highly correlated to the availability of prey (or predator:prey ratio) under greenhouse conditions. D. hesperus-induced fruit damage occurred when the predator:prey ratio was >1:10 D. hesperus:F. occidentalis. Considering the potential risk of fruit damage by D. hesperus and the need for effective control of F. occidentalis, a 0.5-1:10 D. hesperus:F. occidentalis ratio is recommended when the thrips population density is in the range of 60-150 thrips per plant.  相似文献   

9.
The life cycle of the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), one of the most important glasshouse pests, includes a soil passage composed of three instars that deserve more attention in terms of biocontrol strategies. It has been repeatedly reported that two polyphagous predatory mites, Stratiolaelaps miles (Berlese) and Hypoaspis (Geolaelaps) aculeifer (Canestrini) (Acari: Laelapidae), also prey on these thrips stages, in addition to several other soil inhabiting prey species. However, the potential thrips consumption rates have never been quantified for these predatory mites. Therefore, an arena experiment was carried out to investigate the potential predation rates of the two mites on second instar larvae, prepupae, and pupae of F. occidentalis. In addition, the fecundity on the thrips diet was assessed and compared to oviposition rate on a nematode prey. All thrips instars were accepted as prey by each mite species. Females of H. aculeifer preyed on 3.5 (± 0.5) thrips instars and laid 2.5 (± 0.87) eggs per day, whereas females of S. miles preyed on 1.64 (± 0.3) thrips and laid 0.8 (± 0.53) eggs. Males of both species killed 0.6 (± 0.3) thrips per day. The fitness of the two predatory mites on F. occidentalis as prey and their suitability as biocontrol agents are elucidated. Reasons for reduced thrips control in the soil environment, in contrast to the results obtained in arena assays are discussed.  相似文献   

10.
Prey refuges are expected to affect population dynamics, but direct experimental tests of this hypothesis are scarce. Larvae of western flower thrips Frankliniella occidentalis use the web produced by spider mites as a refuge from predation by the predatory mite Neoseiulus cucumeris. Thrips incur a cost of using the refuge through reduced food quality within the web due to spider mite herbivory, resulting in a reduction of thrips developmental rate. These individual costs and benefits of refuge use were incorporated in a stage-structured predator-prey model developed for this system. The model predicted higher thrips numbers in presence than in absence of the refuge during the initial phase. A greenhouse experiment was carried out to test this prediction: the dynamics of thrips and their predators was followed on plants damaged by spider mites, either with or without web. Thrips densities in presence of predators were higher on plants with web than on unwebbed plants after 3 weeks. Experimental data fitted model predictions, indicating that individual-level measurements of refuge costs and benefits can be extrapolated to the level of interacting populations. Model-derived calculations of thrips population growth rate enable the estimation of the minimum predator density at which thrips benefit from using the web as a refuge. The model also predicted a minor effect of the refuge on the prey density at equilibrium, indicating that the effect of refuges on population dynamics hinges on the temporal scale considered.  相似文献   

11.
The phytoseiid mites Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Schueten are used together and alone as biological control agents against tetranychid pest mites of apple. Their effectiveness as control agents may be impacted by intraguild predation. The effects of prey species and prey density on the rates of inter- and intraspecific predation and oviposition by these two predators were investigated through a series of experiments. Adult female predators were given prey as mixed populations of phytoseiid larvae and larvae of a more preferred species, the spider mite, Tetranychus urticae Koch, at different densities and ratios. Typhlodromus pyri, more of a generalist predator, showed higher rates of predation and cannibalism on phytoseiid immatures at most prey densities and ratios. Manly preference indices indicated that T. pyri switched to feed on phytoseiid larvae at higher prey levels and ratios of T. urticae than M. occidentalis. This greater ability to use phytoseiid larvae as prey may help stabilize T. pyri populations when more preferred prey is unavailable. This may, in part, explain the observed persistence of T. pyri populations when M. occidentalis populations were decreasing in orchard test plots.  相似文献   

12.
Predation and oviposition by three predacious insects [ Scolothrips takahashii Priesner (Thysanoptera: Thripidae), Stethorus japonicus H. Kamiya (Coleoptera: Coccinellidae), and Oligota kashmirica benefica Naomi (Coleoptera: Staphylinidae)] were examined using egg patches of three spider mite species [ Amphitetranychus viennensis (Zacher), Tetranychus urticae Koch, and Panonychus mori Yokoyama (all Acari: Tetranychidae)] that are pest species on Japanese pear [ Pyrus serotina Rehder (Rosaceae)]. Scolothrips takahashii females consumed more prey and laid more eggs in A. viennensis and T. urticae egg patches than in P. mori egg patches. Females also left P. mori egg patches sooner than they left other egg patches even at high prey density. Predation and oviposition of S. takahashii in a prey patch were greatly enhanced by the complicated webs produced by A. viennensis . Stethorus japonicus females consumed significantly more prey and laid more eggs in A. viennensis egg patches than in P. mori egg patches, with intermediate values in T. urticae egg patches, reflecting the quality of each spider mite species as prey. Oligota kashmirica benefica females consumed more prey and laid more eggs in A. viennensis and T. urticae egg patches than in P. mori egg patches, particularly at high prey density. However, predation and oviposition by O. kashmirica benefica increased greatly with increasing prey density, even in P. mori egg patches, indicating that prey density was the most important factor in predation and oviposition by this species. These results are discussed in relation to the potential effect of each predator on the suppression of different spider mite species on Japanese pear.  相似文献   

13.
明确不同猎物及密度下巴氏新小绥螨Neoseiulus barkeri与拉戈钝绥螨Amblyseius largoensis(Muma)的同类相残和集团内捕食作用,为其协同应用控制橡胶树害螨提供依据.在室温27±1℃、湿度75%±5%、光周期12 L∶12D 条件下,以六点始叶螨 Eotetranvchus sexmaculatus(Riley)、比哈小爪螨Oligonychus biharen(Hirst)和东方真叶螨Eutetranychus orientalis(klein)为集团外猎物,观察巴氏新小绥螨和拉戈钝绥螨对集团内和集团外猎物的捕食选择行为,以及不同集团外猎物密度下两种捕食螨对同种和异种捕食螨的捕食作用.巴氏新小绥螨和拉戈钝绥螨对异种个体及集团外不同猎物的捕食偏好性及捕食时间存在明显差异.巴氏新小绥螨偏好取食集团外猎物,异种捕食螨拉戈钝绥螨残存率达到80.00%以上;拉戈钝绥螨偏好取食集团外猎物六点始叶螨和比哈小爪螨,而当东方真叶螨存在时,其更偏好取食异种捕食螨巴氏新小绥螨(残存率为26.67%);发生集团内捕食时,拉戈钝绥螨为集团内捕食者,而巴氏新小绥螨为集团内猎物.集团外猎物密度可显著影响巴氏新小绥螨和拉戈钝绥螨相残作用,尤以猎物六点始叶螨对巴氏新小绥螨和东方真叶螨对拉戈钝绥螨影响最为明显,其充足时比无猎物时捕食量分别下降了 68.85%和62.90%.巴氏新小绥螨和拉戈钝绥螨的集团内捕食分别以比哈小爪螨和六点始叶螨的影响最大,猎物充足时比无猎物时捕食量下降了 80.00%和69.44%,但拉戈钝绥螨在以东方真叶螨为猎物时集团内捕食受猎物密度影响较小,猎物充足时取食量与猎物不足时接近,比无猎物时捕食量只下降20.83%.集团外猎物六点始叶螨、比哈小爪螨存在时,巴氏新小绥螨和拉戈钝绥螨表现为偏好选择集团外猎物,密度增加对两种植绥螨的同类相残和集团内捕食作用有明显抑制作用,但东方真叶螨充足与否,拉戈钝绥螨对巴氏新小绥螨的集团内捕食作用影响差异不显著.  相似文献   

14.
Larvae of Phytoseiulus longipes do not feed. Thus, the purpose of this research was to determine the functional response as well as developmental and survival rates of the nymphal stages of this predator on the egg stage of the prey Tetranychus pacificus. The egg consumption for both immature stages increased smoothly with a negative rate reaching a plateau (type II response). To complete their development, the protonymphs and deutonymphs consumed mean minimums of 3.15 and 3.56 eggs, respectively, at a prey density of 20 per excised leaf arena. The mean daily developmental and survival rates also showed a curvilinear rise to a plateau. These plateaus for both developmental (71%) and survival rates (100%) were obtained at a prey egg density of 20 for both nymphal stages. Attack coefficients and handling times for both predator stages were estimated using several curve fitting models. All these models indicated a higher value of attack coefficient and a lower value of handling time for deutonymphs as compared to protonymphs. These findings, combined with the knowledge of adults' predation response, foraging behaviour and prey preference, indicate this predator's overall potential as a biological control agent against web-spinning spider mites such as the Pacific spider mite.  相似文献   

15.
The efficiency of a natural enemy combination compared to a single species release for the control of western flower thrips (WFT) Frankliniella occidentalis (Pergande) on cucumber plants was investigated. Since a large part of F occidentalis seems to enter the soil passage, a joint release of the plant-inhabiting predatory mite Amblyseius cucumeris (Oudemans) that feeds on thrips first-instar larvae and the soil-dwelling predatory mite Hypoaspis aculeifer (Canestrini) that preys on thrips pupae in the ground might offer a promising approach for a holistic control strategy. Therefore, two sets of experiments were conducted in cooperation with a commercial vegetable grower where the plants in plots were infested with a defined number of larval and adult F occidentalis. Two species of natural enemies were released either synchronously or solely, and their efficacy was compared to control plots devoid of antagonists. In both experiments, the predatory mites were released twice with a density of 46 A. cucumeris/m2, and 207 H. aculeifer/m2 (low-density) in the first experiment and 528 H. aculeifer/m2 (high-density) in the second one. Population growth of all arthropod species on the plants and in the soil was quantified at regular intervals and included all soil-dwelling mites and alternative preys present in the substrate. The results showed that H. aculeifer alone had a significant impact on thrips population development only when released at high-densities, but competence was lower compared to the other antagonist treatments. The impact of A. cucumeris alone and A. cucumeris & H. aculeifer combined was similar. Thus, the pooled exploitation of natural enemies did not boost thrips control compared to the single species application of A. cucumeris (non-additive effect), which could be explained by resource competition between both predatory mite species. Species number and population size in the soil of the experimental plots both showed a high variability, a possible consequence of their interaction with released soil-dwelling predatory H. aculeifer mites. The impact of resource competition and presence of alternative preys on thrips biological control is exhaustively discussed. From our study, we can extract the subsequent conclusions: (1) the combined use of H. aculeifer and A. cucumeris cannot increase thrips control on cucumber compared to the release of A. cucumeris alone, but the overall reliability of thrips biological control might be enhanced, (2) the availability of alternative preys seemed to affect the thrips predation rate of H. aculeifer, and (3) the impact of naturally occurring soil predatory mites on the control of WFT seemed to be partial.  相似文献   

16.
We evaluated the effects of predator release pattern and prey distribution on rate of suppression of the twospotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae) and visual damage to the ornamental plant, Impatiens wallerana Hook.f., in a greenhouse. Sixteen impatiens plants were arranged in a square and infested with the same total number of spider mites distributed either evenly (equal numbers on all plants) or clumped (divided equally among the 4 central plants), simulating a “hot spot.” The predatory mite, Phytoseiulus persimilis Athias-Henriot, was released at a 1:4 predator:prey ratio based on total spider mites in the experimental unit, but the pattern of release was either even or clumped, which simulated broadcast or point-release strategies, respectively. Nine days after predator release, spider mite populations were reduced in all treatments, but only in the clumped pest-clumped predator treatment were spider mites undetectable. Poorest pest suppression occurred in the clumped spider mite-even predator treatment. Eighteen days after predator release, spider mites were eliminated in all treatments, but a reduction in average plant damage occurred only in treatments in which the predator release pattern matched the spider mite distribution (i.e., even-even or clumped-clumped) with the greatest reduction in the even-even treatment. Results suggest that there is an advantage to releasing predators in “hot spots” provided that the recommended predator:prey ratio is maintained within infested patches. If more uniform predator releases are planned, overall predator numbers need to be kept sufficiently high so that the predator:prey ratio of 1:4 shown to prevent damage on impatiens is achieved in higher-density spider mite patches.  相似文献   

17.
【背景】南方小花蝽是一类很有利用前景的捕食性天敌,而有关其在不同捕食空间下对我国局部地区暴发成灾的重要入侵害虫西花蓟马捕食控制效能的研究较少。【方法】在实验室条件下比较研究了南方小花蝽成虫在不同试验空间对西花蓟马成虫、若虫的捕食选择性、捕食功能反应与搜寻效应。【结果】南方小花蝽成虫对西花蓟马若虫的捕食选择性强于成虫;在相同的试验空间,南方小花蝽成虫的日均捕食量随猎物数量的增加而增大,其对西花蓟马成虫和若虫的捕食量在猎物数量为每指形管中60头时最大,分别为15.90和19.30头;而搜寻效应随猎物数量的增加而降低。在各供试条件下,捕食功能反应均符合Holling Ⅱ型方程;南方小花蝽成虫在小饲养容器中对西花蓟马若虫的瞬时攻击率最大,为1.2794;而在大饲养容器中对西花蓟马成虫的瞬时攻击率最小,仅为0.3506,其处理1头西花蓟马成虫的时间约需0.0402d,而处理1头若虫的时间仅需0.0242d。在相同的猎物数量下,南方小花蝽成虫在大饲养容器中对西花蓟马的日均捕食量均低于其在小饲养容器中对西花蓟马的日均捕食量。【结论与意义】南方小花蝽对西花蓟马有很强的捕食效能,对西花蓟马的种群消长具有一定控制作用。本研究旨在为应用南方小花蝽防治西花蓟马积累资料,同时为西花蓟马的综合治理奠定理论基础。  相似文献   

18.
Components of search effort were determined for adult females of Orius tristicolor (White) (Hemiptera: Anthocoridae) on bean, Phaseolus vulgaris L., leaves with either western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) or twospotted spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. In the absence of prey, females of O. tristicolor allocated significantly more search time to leaves damaged by western flower thrips than to leaves damaged by twospotted spider mites, artificially damaged leaves or undamaged leaves. In the presence of prey, search time increased with increasing amounts of leaf damage for both prey species, but was not affected by prey species. Amounts of leaf damage or type of prey did not affect giving-up-time. The proportion of predators that successfully located thrips increased with increasing amounts of thrips damage on leaves. Females of O. tristicolor appeared to follow some simple, behavioural rules-of-thumb for allocation of search effort. The presence and type of damage determined the initial effort allocated to searching a leaf. Subsequent effort was determined by successful capture of prey, regardless of species. The implications of these results for application of Orius spp. for biological control are discussed.  相似文献   

19.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

20.
The effect of low temperature storage combined with slow release sulfur dioxide pads was determined in basic laboratory and large-scale commercial tests on western flower thrips, Frankliniella occidentalis Pergande; grape mealybug, Pseudococcus maritimus (Ehrhorn); Pacific spider mite, Tetranychus pacificus McGregor; twospotted spider mite, Tetranychus urticae Koch; and omnivorous leafroller, Platynota stultana Walshingham. Temperatures within the foam containers among the packed clusters decreased from ambient to 2 degrees C within approximately 1 d and ranged from 0.4 to 1.7 degrees C in all tests. Sulfur dioxide concentrations in the foam containers ranged between 0.2 and 1.6 ppm during the 1- to 6-wk storage period in basic tests and 0.5-1.1 ppm during the 1- to 8-wk storage period in the large-scale test. Western flower thrips was completely controlled by a > or =1-wk exposure. Grape mealybug mortality was > or =93% after 2-5 wk exposures and 100% after a 6-wk exposure in basic tests. Pacific spider mite and twospotted spider mite mortality was 98.0 and 99.6%, respectively, after a 6-wk exposure. Mortality of grape mealybug and twospotted spider mite increased significantly at > or =3-wk exposures and Pacific spider mite mortality increased significantly at > or =4-wk exposures. Mortality of the spider mites in general was directly related to the duration of exposure. An 8-wk exposure to low temperature storage combined with slow release sulfur dioxide pads in the large-scale test resulted in 100% mortality of western flower thrips, twospotted spider mite, and omnivorous leafroller. The treatment resulted in <8% survival of grape mealybug and <1% survival of Pacific spider mite in the large-scale test. The combination treatment offers an economical method to attain quarantine control of certain insects and mites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号