首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the occurrence of saproxylic beetles in woodlands of different size and age and their potential to leave woodland areas and cross open grassland in northern Germany. The beetles were recorded by emergence traps and flight-intercept-traps. The investigated sites were dominated by beech, oak and alder, but other tree species also occurred in low abundance. Species richness showed a positive relation to stand size and age of woods. Both total and rarefaction species richness were the lowest in small and young woods and highest in old and large woods. Species richness decreased asymptotically from the inner-wood habitat to a distance greater than 80 m from the wood margin. 80 species were classified into 46 low mobile species found at a distance <30 m from wood margins and 34 high mobile species found >30 m from wood margins. The most mobile species were found the most frequently in all woods; but they contributed less to species richness in wood stands than did the species with low mobility. The contribution of the least mobile species to species richness in wood stands increased with the age and size of the stands, with the effect of stand size being the greater. We conclude that in our study region woods larger than 100 ha are necessary to maintain the highest richness of the least mobile saproxylic beetles.  相似文献   

2.
Mechanical clearing of understory vegetation is increasingly used in Euro-Mediterranean forests to reduce fire hazard, yet its long-term consequences for biodiversity remain poorly understood. This study analysed the influence of time since understory management and management frequency, on herbaceous species richness, cover and composition, functional richness and composition, and richness and cover within functional groups (life and growth forms, dispersal strategy, clonality, and plant height), using a chronosequence of cork oak (Quercus suber) stands spanning about 70 years. Overall species richness was virtually constant over time, but the richness of species with annual life form and plasticity in height was much higher in recently and recurrently treated stands; the opposite was found for perennial (mainly hemicryptophytes and chamaephytes), tussock-forming and clonal species richness, and functional richness. Overall herbaceous cover and that of annual, semi-basal, non-clonal and plastic species (in height) were favoured by recent and recurrent fuel treatments; cover by perennial (hemicryptophytes and chamaephytes), short basal, tussock-forming, and clonal species tended to increase for >10–20 years after management, and declined with management frequency. There was a marked shift in species and functional composition associated with time since understory management and management frequency. These findings suggest that widespread fuel management at <10 year intervals may shift understory herb communities to early-successional stages, impairing the persistence of species and functional groups recovering slowly after disturbance. Fuel management needs to balance the dual goals of fire hazard reduction and biodiversity conservation, retaining undisturbed patches in landscapes otherwise managed to reduce fuel accumulation.  相似文献   

3.
Understanding how overall patterns of spatial variation in species richness are affected by distributional patterns of species has been an area of growing concern. In the present study, we investigated the relative importance of common and rare species as contributors in overall plant species richness. We further examined if the effects of common or rare species in richness patterns are affected by the size of the sampling units and if the observed patterns hold at different habitats. We used a dataset of 5,148 higher plant species distributed across 16,114 sampling plots located in 240 sites of the NATURA 2000 network of Greece. We ranked all species based on the number of sites they occupied and we developed a common to rare and a rare to common sequence. We correlated those sequences with cumulative species distributions. We performed this analysis in nine different sizes of sampling units and in three different datasets referring to (a) all habitat types together, (b) coniferous habitats only and (c) alpine habitats only. Our analysis showed that despite the proportionally higher numbers of restricted species, widespread species make a greater contribution to overall richness patterns and that this observed pattern does not depend on the size of the sampling units. Moreover, the observed pattern stands for different habitat types. Our findings support the generality of this pattern and highlight the importance of widespread species as adequate indicators of biodiversity patterns at various habitat types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
《Acta Oecologica》1999,20(5):499-508
Post-fire regeneration patterns (plant cover and richness) in the Valencia region (eastern Iberian Peninsula) are studied by analysing data from two different samplings after two periods of large fires (1991 and 1994). Emphasis is given to comparing different environmental conditions (thermo-Mediterranean vs. meso-Mediterranean; south facing vs. north facing slopes) and different bedrock types (limestone vs. marls). Results suggest that the highest post-fire cover and species richness is reached in thermo-Mediterranean conditions on limestone, and the main species are the resprouters Quercus coccifera and Brachypodium retusum. North-facing sites have higher plant cover than south-facing ones, and most life forms (trees, shrubs, grasses) have higher cover in these sites. Species richness is higher on north-facing sites than on the south-facing ones at the small scale (1 to 200 m2), but differences were not significant at the highest scale studied (1 000 m2). Plant species richness with increasing sampling area follows the classical log-log relationship; however, when species are segregated by life forms (woody species and herbs), different species-area relationships were found.  相似文献   

5.
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.  相似文献   

6.
Tree species composition and structure of a 40-year chronosequence of secondary forests was compared with old-growth forests in southern Bahia, Brazil. Twelve stands were randomly selected that represented three age classes: 10, 25, and 40 year old with four replications in each class. All stands selected had been established after abandonment from swidden cultivation and were surrounded by old-growth forests. In every stand, ten 0.01-ha transects were established and all stems (≥5 cm diameter at breast height) were measured and identified. Results were compared with the dataset of two neighboring old-growth sites. Mean diameter, total height, and stand basal area increased with age. Number of trees/ha peaked in 40 year old stands. The results showed that secondary forests in this region take much more than 40 years to recover the structure of old-growth forests. In contrast, species richness recovery was rapid with a continuous accumulation of species with age in secondary forests. Species richness and diversity increased with age as did similarity between secondary stands and old-growth stands. More than half of the species found in the 40 year old stands were shared with the neighboring old-growth forests. However, species richness and diversity were higher in old growth sites.  相似文献   

7.
To discern mechanisms maintaining the diversity of grassland and forest butterflies in coppice woods managed for the production of Japanese forest mushroom logs, we investigated the butterfly fauna in cut-over land tracts shortly after felling and 5 year later, and in forest stands 10, 15, and 25 year after felling (here, we use the term “forests” when referring to the chronosequence of these treed stands). Butterfly species richness and diversity (H′) and the densities of individuals were highest in cut-over lands 5 year after clear-cutting, followed by 25-year-old forest stands. In forests, the richness and densities of forest butterfly species were higher than were those of grassland species. Among forest stands of different ages, forest butterfly species’ richness and the densities of individuals were highest in 25-year-old woods nearing felling time. Some forest butterfly species were observed only in forests. The species richness and densities of grassland butterflies were much higher in cut-over lands 0 and 5 year post felling than in forests; grassland species were rarely found in stands ≥10 year old. Thus, cut-over lands seem to function as temporary habitats for grassland species. Furthermore, the number of forest butterfly species was the same in cut-over lands 5 year after felling and in 25-year-old forest stands; the densities of forest butterfly species was higher in these cut-over lands than in the forest stands. Forest butterfly species living on cut-over land 5 year post felling sipped flower nectar, laid eggs on host plants, and practiced territorial behaviour involved in mate finding. Hence, these cut-over lands functioned as important habitats for various developmental stages of forest butterflies. In conclusion, traditional coppicing in woods for production of Japanese forest mushroom logs is very important for the maintenance of diversity in grassland and forest butterfly species.  相似文献   

8.
Whether aging forest fragments are able to recover original assemblages or progressively move toward impoverished successional stages remains as an open question. This study tested the hypothesis that seedling assemblages in forest fragments differ from those across mature forest stands and examined to what extent the uncovered patterns supported the notion that edge‐affected habitats tend to support impoverished tree assemblages dominated by pioneer species. We contrasted a series of small forest remnants (3–91 ha) to old‐growth stands located in the largest (ca 3500 ha) and best preserved forest remnant in northeastern Brazil and found that tree seedling assemblages inhabiting forest fragments exhibited reduced species richness (up to 50%) at different spatial scales in comparison to seedling assemblages in mature forest and adult assemblages in both fragments and mature forest stands. Moreover, ordination analyses clearly segregated fragment seedling assemblages in taxonomic/functional terms and segregation correlated to the richness of pioneer species. Seedlings of pioneer species and those bearing medium‐sized seeds (0.6–1.5 cm) increased in fragments, whereas large‐seeded species (1.5–3.0 cm) were reduced by more than a half. Such a multiple‐scale replacement of the old‐growth flora by pioneers was also confirmed by an indicator species analysis and the resulting pioneer indicator species. Our results suggest that small forest fragments support impoverished and distorted seedling assemblages. This floristic/functional drift implies that forest remnants or edge‐affected habitats tend to be dominated by a small set of pioneer tree species rather than supporting a substantial portion of the old‐growth flora as do mature forest stands.  相似文献   

9.
In this study, we examined to what extent the internal site factors (light and soil conditions) are responsible for herb layer diversity in oak-dominated forest stands growing on different substrates in central Bohemia (Czech Republic). We collected data on herb layer diversity, light and nutrient availability at nine oak stands, representing the range of environmental variability for these types of forests in the region. We found that species richness increased with light availability, but only if the site occupied predominantly by fast-colonizing species was excluded from the analysis (P < 0.05). Species richness correlated positively with soil pH and negatively with nitrogen (N) concentration in humus (P < 0.05). The highest species richness was found at sites with not only low N soil concentration, but also simultaneously with high phosphorus (P) soil concentration. Despite this finding, however, herb layer diversity is evidently threatened much more in P-rich soils than in P-poor soils. It seems that the enhancement of N in an ecosystem due to litter accumulation and N deposition generally leads to only a minor increase in N availability at P-poor sites, but a considerable increase at P-rich sites. Therefore, species richness can be exceptionally high at P-rich sites, but only under conditions of strong N limitation.  相似文献   

10.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

11.
  1. The effects of timber harvest in the moist coniferous forests of western North America are not well documented for ecologically important arthropods such as moths.
  2. We assessed the response of macromoth community structure (abundance, sample size-corrected estimates of species richness and diversity, and overall community composition) to time since deforestation at 20 previously logged sites (1–95 years post-harvest), and compared the macromoth communities at these stands to four old growth stands.
  3. As stand age increased following timber harvest, the number of macromoths captured in ultraviolet light traps increased and the relative abundance of dietary generalists declined, but sample size-corrected estimates of species richness and diversity did not vary. Macromoth community composition of the youngest stands (<10 years post-harvest) differed markedly from each other but converged soon thereafter.
  4. Macromoth communities at old growth sites featured higher capture rates, lower dominance by dietary generalists, and higher sample size-corrected estimates of species richness and diversity than at previously logged sites. Community composition profiles for old growth sites differed from all previously logged sites, but the differences were subtle except in comparison to the youngest logged sites. None of the 188 species we sampled were old growth specialists.
  5. Our results reveal dramatic initial impacts of deforestation on macromoth communities in moist coniferous forests of western North America. Such effects are largely reversed within two decades post-harvest but some effects persist for at least 95-years following logging.
  相似文献   

12.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

13.
We provide total vascular plant species counts for three 1-ha plots in deciduous, semi-deciduous and evergreen forests in central Bolivia. Species richness ranged from 297 species and 22,360 individuals/ha in the dry deciduous forest to 382 species and 31,670 individuals/ha in the evergreen forest. Orchidaceae, Pteridophyta and Leguminosae were among the most species-rich major plant groups in each plot, and Peperomia (Piperaceae), Pleurothallis (Orchidaceae) and Tillandsia (Bromeliaceae), all epiphytes, were the most species-rich genera. This dominance of a few but very diverse and/or widespread taxa contrasted with the low compositional similarity between plots. In a neotropical context, these Central Bolivian forest plots are similar in total species richness to other dry deciduous and humid montane forests, but less rich than most Amazonian forests. Nevertheless, lianas, terrestrial herbs and especially epiphytes proved to be of equal or higher species richness than most other neotropical forest inventories from which data are available. We therefore highlight the importance of non-woody life-forms (especially epiphytes and terrestrial herbs) in Andean foothill forest ecosystems in terms of species richness and numbers of individuals, representing in some cases nearly 50% of the species and more than 75% of the individuals. These figures stress the need for an increased inventory effort on non-woody plant groups in order to accurately direct conservation actions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We sampled the wood beetle fauna in 1) living hollow, 2) standing dead and 3) downed dead beech Fagus svlvatica logs in fragmented old–growth forests in southern Sweden In nearly primaeval stands, species richness was similar in the three types of microhabitat, but m previously (50–100 yr ago) managed stands species richness was lower in living hollow trees The number of red–listed beetle species per sample was higher in living hollow beeches in nearly primaeval stands than in formerly managed stands, but there was no difference in downed dead beeches This agrees with our expectation, based on the relative stability of the microhabitats, that species living in hollow trees would have a lower dispersal propensity than those that depend on dead, downed logs Among 55 red–listed species found, 69% had a higher frequency in nearly primaeval stands than in previously managed stands For 22 endangered plus vulnerable species the figure was 77% Most red–listed species had occurrence frequencies of 5%, or less  相似文献   

15.
In the present work we examined the composition and distribution across three soil layers of the buried soil seed bank under three different overstory types (Fagus sylvatica, Quercus robur, Pinus sylvestris) and in logging areas in a 4383-ha forest in central Belgium. The objectives were: (1) to investigate whether species composition and species richness of soil seed banks are affected by different forest stands; (2) to examine how abundant are habitat-specific forest species in seed banks under different planted tree layers. The study was carried out in stands which are replicated, managed in the same way (even-aged high forest), and growing on the same soil type with the same land-use history. In the investigated area, the seed bank did show significant differences under oak, beech, pine and in logging areas, respectively in terms of size, composition and depth occurrence. All species and layers taken together, the seed bank size ranked as follows: oakwood > beechwood > logging area > pinewood. The same pattern was found for forest species. Seed numbers of Betula pendula, Calluna vulgaris, Dryopteris dilatata and Rubus fruticosus were significantly higher under the beech canopy. Carex remota, Impatiens parviflora and Lotus sp. showed a significantly denser seed bank in logging areas, while Digitalis purpurea seeds were significantly more abundant in soils under the oak canopy. The fact that the seed bank of an originally homogeneous forest varies under different planted stands highlights that a long period of canopy conversion can affect the composition and depth of buried seeds.  相似文献   

16.
Novel or emergent ecosystems arising from human action present both threats and opportunities for biodiversity. It has been suggested that exotic species can “facilitate” or “inhibit” native biodiversity through habitat modification. In Britain, there is a discussion over the contribution to biodiversity of plantations of exotic conifer species as these are commonly thought to have little relevancy as a habitat for native biodiversity. To address this we compared the species richness of a range of different taxonomic groups (lichens, bryophytes, fungi, vascular plants, invertebrates and songbirds) in exotic and native forest stands of differing structural stages in northern and southern Britain. In terms of overall native species-richness there was no significant difference between the exotic and the native stands. In the north, six species groups showed higher values in the exotic Sitka spruce (Picea sitchensis) stands with the remaining six showing higher values in the native Scots pine (Pinus sylvestris) stands. Most notably, lichen species richness was much lower in the exotic stands compared to the native stands, whereas bryophyte and fungal species richness was proportionately higher in the exotic stands. In the south, five species groups (all invertebrate taxa) showed higher species richness in exotic Norway spruce (Picea abies) stands compared to native oak (Quercus robur) stands. Five species groups had higher species-richness in the oak stands, in particular lichens and fungi. It is concluded that emergent ecosystems of exotic conifer species are not irrelevant to biodiversity. Where already well-established they can provide habitat for native species particularly if native woodland is scarce and biodiversity restoration is an immediate priority.  相似文献   

17.
Abstract The highly invasive giant knotweed (Reynoutria spp.) often displaces nettle (Urtica dioica) dominated stands in European floodplains. Urtica-dominated stands differ from the monospecific Reynoutria stands in plant species richness and stand structure. We thus hypothesize that Reynoutria invasion profoundly alters ecosystem structure and function, with negative effects cascading up through the food chain. We performed a paired sampling design in six sites belonging to two different locations and studied effects on the soil and the litter-dwelling fauna. Reynoutria stands differed in habitat structure and were characterized by decreased soil pH and potassium depletion. The faunal analysis is based on model groups of herbivore generalists (Gastropoda), detritivores (Isopoda and Diplopoda), and predators (Opiliones). The gastropod assemblages from Reynoutria stands were severely impoverished subsets of those from Urtica stands with reduced densities, species richness and diversity. In general, snails were more sensitive to Reynoutria invasion than slugs such as the invasive Arion 'lusitanicus’. Among detritivores, the abundance of the Isopoda decreased, whereas Diplopoda were not affected by Reynoutria invasion. Yet, the relative abundance of detritivores was significantly higher within the Reynoutria stands. Abundance, species richness and diversity of the predatory Opiliones were higher in the relatively sparse Reynoutria stands. We conclude that ecosystem changes associated with Reynoutria invasion are characterized by shifts from a plant-based to a detritus-based food chain and that Reynoutria invasion primarily enhances predators that profit from the simplified vegetation structure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The species richness of epiphytic lichens is continuously decreasing by degradation and loss of habitat. Considering that taxonomic identification of all species is time and resource consuming, rapid assessment methods to extrapolate the total number of species are needed for practical conservation. This paper describes an alternative method using the correlation between lichens growth forms and species richness. The study was conducted in 406 forest stands located in Central Spain, covering a wide range of mediterranean-climate ecosystem regions, management intensity levels, canopy cover conditions, and tree sizes. The presence/absence of epiphytic lichens was determined in 6090 trees, which were dominated by oak species (Quercus ilex, Q. faginea, and Q. pyrenaica). In all type of forests, the diversity of growth forms was positively correlated with the total epiphytic lichen richness. In all cases, species richness increased in non-managed forest stands with dense canopies. Thus, we propose the use of lichen growth forms as a helpful surrogate of species richness to detect potentially conservation priority areas in the Mediterranean region.  相似文献   

19.
Several studies have shown that the contribution of individual species to the positive relationship between species richness and community biomass production cannot be easily predicted from species monocultures. Here, we used a biodiversity experiment with a pool of nine potentially dominant grassland species to relate the species richness–productivity relationship to responses in density, size and aboveground allocation patterns of individual species. Aboveground community biomass increased strongly with the transition from monocultures to two-species mixtures but only slightly with the transition from two- to nine-species mixtures. Tripartite partitioning showed that the strong increase shown by the former was due to trait-independent complementarity effects, while the slight increase shown by the latter was due to dominance effects. Trait-dependent complementarity effects depended on species composition. Relative yield total (RYT) was greater than 1 (RYT > 1) in mixtures but did not increase with species richness, which is consistent with the constant complementarity effect. The relative yield (RY) of only one species, Arrhenatherum elatius, continually increased with species richness, while those of the other species studied decreased with species richness or varied among different species compositions within richness levels. High observed/expected RYs (RYo/RYe > 1) of individual species were mainly due to increased module densities, whereas low observed/expected RYs (RYo/RYe < 1) were due to more pronounced decreases in module density (species with stoloniferous or creeping growth) or module size (species with clearly-defined plant individuals). The trade-off between module density and size, typical for plant populations under the law of constant final yield, was compensated among species. The positive trait-independent complementarity effect could be explained by an increase in community module density, which reached a maximum at low species richness. In contrast, the increasing dominance effect was attributable to the species-specific ability, in particular that of A. elatius, to increase module size, while intrinsic growth limitations led to a suppression of the remaining species in many mixtures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Besides natural tree regeneration itself, the development of the forest understory community is highly indicative of the ecological recovery of forest stands post-harvesting, and therefore of the sustainability of forest management. High mountain forests might show particularly slow recovery of the understory plant community because of harsh environmental conditions. We compared understory community richness and composition among three age classes of forest stands in the subalpine Engelmann Spruce–Subalpine Fir zone in the interior of British Columbia, Canada. Species composition was found to differ significantly between mature stands (>110 years old and never harvested) and both recent clearcuts (5–8 years old) and the oldest clearcuts present in the study area (second growth: 24–28 years old). A non-metric multidimensional scaling (NMDS) ordination revealed no unidirectional return of species composition in harvested stands towards that of mature forest; indeed, plots in recent clearcuts and second growth stands were similar to one another and clearly separated from the mature stands. Indicator Species Analysis revealed that moss species were particularly indicative of mature forest, with four moss species being common in mature stands but absent from both younger stages. Compared to what has been reported for lower elevation coniferous forests, e.g. in the U.S. Pacific Northwest, redevelopment of the understory appears to be slow after harvesting in these high elevation mountain forests. Rotation intervals that consider the natural temporal pattern of species turnover and the occurrence interval of major natural disturbances (here: fire) should provide effective approaches to sustainable forest management of these forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号