共查询到20条相似文献,搜索用时 0 毫秒
1.
An automated procedure for NOE assignment and three-dimensional structure refinement is presented. The input to the procedure consists of (1) an ensemble of preliminary protein NMR structures, (2) partial sequence-specific assignments for the protein and (3) the positions and volumes of unassigned NOESY cross peaks. Chemical shifts for unassigned side chain protons are predicted from the preliminary structures. The chemical shifts and unassigned NOESY cross peaks are input to an automated procedure for NOE assignment and structure calculation (ARIA) [Nilges et al. (1997) J. Mol. Biol., 269, 408–422]. ARIA is optimized for the task of structure refinement of larger proteins. Errors are filtered to ensure that sequence-specific assignments are reliable. The procedure is applied to the 27.8 kDa single-chain T cell receptor (scTCR). Preliminary NMR structures, nearly complete backbone assignments, partial assignments of side chain protons and more than 1300 unassigned NOESY cross peaks are input. Using the procedure, the resonant frequencies of more than 40 additional side chain protons are assigned. Over 400 new NOE cross peaks are assigned unambiguously. Distances derived from the automatically assigned NOEs improve the precision and quality of calculated scTCR structures. In the refined structures, a hydrophobic cluster of side chains on the scTCR surface that binds major histocompatibility complex (MHC)/antigen is revealed. It is composed of the side chains of residues from three loops and stabilizes the conformation of residues that interact with MHC. 相似文献
2.
3.
The "rules" governing protein structure and stability are still poorly understood. Important clues have come from proteins that operate under extreme conditions, because these clarify the physical constraints on proteins. One obvious extreme is pressure, but so far little is known of the behavior of proteins under pressure, largely for technical reasons. We have therefore developed new methodology for calculating structure change in solution with pressure, using NMR chemical shift changes, and we report the change in structure of lysozyme on going from 30 bar to 2000 bar, this being the first solution structure of a globular protein under pressure. The alpha-helical domain is compressed by approximately 1%, due to tighter packing between helices. The interdomain region is also compressed. By contrast, the beta-sheet domain displays very little overall compression, but undergoes more structural distortion than the alpha-domain. The largest volume changes tend to occur close to hydrated cavities. Because isothermal compressibility is related to volume fluctuation, this suggests that buried water molecules play an important role in conformational fluctuation at normal pressures, and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening. 相似文献
4.
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments. 相似文献
5.
M. Imex Aguirre-Cardenas Dane H. Geddes-Buehre Karin A. Crowhurst 《Biochemistry and Biophysics Reports》2021
HdeA is an acid-stress chaperone that operates in the periplasm of various strains of pathogenic gram-negative bacteria. Its primary function is to prevent irreversible aggregation of other periplasmic proteins when the bacteria enter the acidic environment of the stomach after contaminated food is ingested; its role is therefore to help the bacteria survive long enough to enter and colonize the intestines. The mechanism of operation of HdeA is unusual in that this helical homodimer is inactive when folded at neutral pH but becomes activated at low pH after the dimer dissociates and partially unfolds. Studies with chemical reducing agents previously suggested that the intramolecular disulfide bond is important for maintaining residual structure in HdeA at low pH and may be responsible for positioning exposed hydrophobic residues together for the purpose of binding unfolded client proteins. In order to explore its role in HdeA structure and chaperone function we performed a conservative cysteine to serine mutation of the disulfide. We found that, although residual structure is greatly diminished at pH 2 without the disulfide, it is not completely lost; conversely, the mutant is almost completely random coil at pH 6. Aggregation assays showed that mutated HdeA, although less successful as a chaperone than wild type, still maintains a surprising level of function. These studies highlight that we still have much to learn about the factors that stabilize residual structure at low pH and the role of disulfide bonds. 相似文献
6.
PsiCSI is a highly accurate and automated method of assigning secondary structure from NMR data, which is a useful intermediate step in the determination of tertiary structures. The method combines information from chemical shifts and protein sequence using three layers of neural networks. Training and testing was performed on a suite of 92 proteins (9437 residues) with known secondary and tertiary structure. Using a stringent cross-validation procedure in which the target and homologous proteins were removed from the databases used for training the neural networks, an average 89% Q3 accuracy (per residue) was observed. This is an increase of 6.2% and 5.5% (representing 36% and 33% fewer errors) over methods that use chemical shifts (CSI) or sequence information (Psipred) alone. In addition, PsiCSI improves upon the translation of chemical shift information to secondary structure (Q3 = 87.4%) and is able to use sequence information as an effective substitute for sparse NMR data (Q3 = 86.9% without (13)C shifts and Q3 = 86.8% with only H(alpha) shifts available). Finally, errors made by PsiCSI almost exclusively involve the interchange of helix or strand with coil and not helix with strand (<2.5 occurrences per 10000 residues). The automation, increased accuracy, absence of gross errors, and robustness with regards to sparse data make PsiCSI ideal for high-throughput applications, and should improve the effectiveness of hybrid NMR/de novo structure determination methods. A Web server is available for users to submit data and have the assignment returned. 相似文献
7.
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and
1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.Supplementary material to this paper is available in electronic form at
http://dx.doi.org/10.1007/s10858-005-1717-0 相似文献
8.
Kyle Trainor Jeffrey A. Palumbo Duncan W. S. MacKenzie Elizabeth M. Meiering 《Protein science : a publication of the Protein Society》2020,29(1):306-314
Isotropic chemical shifts measured by solution nuclear magnetic resonance (NMR) spectroscopy offer extensive insights into protein structure and dynamics. Temperature dependences add a valuable dimension; notably, the temperature dependences of amide proton chemical shifts are valuable probes of hydrogen bonding, temperature‐dependent loss of structure, and exchange between distinct protein conformations. Accordingly, their uses include structural analysis of both folded and disordered proteins, and determination of the effects of mutations, binding, or solution conditions on protein energetics. Fundamentally, these temperature dependences result from changes in the local magnetic environments of nuclei, but correlations with global thermodynamic parameters measured via calorimetric methods have been observed. Although the temperature dependences of amide proton and nitrogen chemical shifts are often well approximated by a linear model, deviations from linearity are also observed and may be interpreted as evidence of fast exchange between distinct conformational states. Here, we describe computational methods, accessible via the Shift‐T web server, including an automated tracking algorithm that propagates initial (single temperature) 1H? 15N cross peak assignments to spectra collected over a range of temperatures. Amide proton and nitrogen temperature coefficients (slopes determined by fitting chemical shift vs. temperature data to a linear model) are subsequently calculated. Also included are methods for the detection of systematic, statistically significant deviation from linearity (curvature) in the temperature dependences of amide proton chemical shifts. The use and utility of these methods are illustrated by example, and the Shift‐T web server is freely available at http://meieringlab.uwaterloo.ca/shiftt . 相似文献
9.
Linear regression formulae are given for converting 1H and 13C magnetic shielding constants calculated at common ab initio and density functional theory levels of calculation into chemical shifts relative to tetramethylsilane. Accuracies of roughly ±2.2 ppm (13C) and ±0.15 ppm (1H) or better are found for the training set for most levels. The highest level calculations do not always give better results than economical standard calculations.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
10.
Marsh JA Singh VK Jia Z Forman-Kay JD 《Protein science : a publication of the Protein Society》2006,15(12):2795-2804
The synucleins are a family of intrinsically disordered proteins involved in various human diseases. alpha-Synuclein has been extensively characterized due to its role in Parkinson's disease where it forms intracellular aggregates, while gamma-synuclein is overexpressed in a majority of late-stage breast cancers. Despite fairly strong sequence similarity between the amyloid-forming regions of alpha- and gamma-synuclein, gamma-synuclein has only a weak propensity to form amyloid fibrils. We hypothesize that the different fibrillation tendencies of alpha- and gamma-synuclein may be related to differences in structural propensities. Here we have measured chemical shifts for gamma-synuclein and compared them to previously published shifts for alpha-synuclein. In order to facilitate direct comparison, we have implemented a simple new technique for re-referencing chemical shifts that we have found to be highly effective for both disordered and folded proteins. In addition, we have developed a new method that combines different chemical shifts into a single residue-specific secondary structure propensity (SSP) score. We observe significant differences between alpha- and gamma-synuclein secondary structure propensities. Most interestingly, gamma-synuclein has an increased alpha-helical propensity in the amyloid-forming region that is critical for alpha-synuclein fibrillation, suggesting that increased structural stability in this region may protect against gamma-synuclein aggregation. This comparison of residue-specific secondary structure propensities between intrinsically disordered homologs highlights the sensitivity of transient structure to sequence changes, which we suggest may have been exploited as an evolutionary mechanism for fast modulation of protein structure and, hence, function. 相似文献
11.
Luca S Filippov DV van Boom JH Oschkinat H de Groot HJ Baldus M 《Journal of biomolecular NMR》2001,20(4):325-331
Resonance assignments recently obtained on immobilized polypeptides and a membrane protein aggregate under Magic Angle Spinning are compared to random coil values in the liquid state. The resulting chemical shift differences (secondary chemical shifts) are evaluated in light of the backbone torsion angle previously reported using X-ray crystallography. In all cases, a remarkable correlation is found suggesting that the concept of secondary chemical shifts, well established in the liquid state, can be of similar importance in the context of multiple-labelled polypeptides studied under MAS conditions. 相似文献
12.
Fitzkee NC Torchia DA Bax A 《Protein science : a publication of the Protein Society》2011,20(3):500-512
Measurements of rapid hydrogen exchange (HX) of water with protein amide sites contain valuable information on protein structure and function, but current NMR methods for measuring HX rates are limited in their applicability to large protein systems. An alternate method for measuring rapid HX is presented that is well-suited for larger proteins, and we apply the method to the deuterated, homodimeric 36 kDa HIV-1 integrase catalytic core domain (CCD). Using long mixing times for water-amide magnetization exchange at multiple pH values, HX rates spanning more than four orders of magnitude were measured, as well as NOE cross-relaxation rates to nearby exchangeable protons. HX protection factors for the CCD are found to be large (>10(4)) for residues along the dimer interface, but much smaller in many other regions. Notably, the catalytic helix (residues 152-167) exhibits low HX protection at both ends, indicative of fraying at both termini as opposed to just the N-terminal end, as originally thought. Residues in the LEDGF/p75 binding pocket also show marginal stability, with protection factors in the 10-100 range (~1.4-2.7 kcal/mol). Additionally, elevated NOE cross-relaxation rates are identified and, as expected, correspond to proximity of the amide proton to a rapidly exchanging proton, typically from an OH side chain. Indirect NOE transfer between H(2) O and the amide proton of I141, a residue in the partially disordered active site of the enzyme, suggests its proximity to the side chain of S147, an interaction seen in the DNA-bound form for a homologous integrase. 相似文献
13.
Atreya HS Mukherjee S Chary KV Lee YM Luchinat C 《Protein science : a publication of the Protein Society》2003,12(3):412-425
We have studied the displacement of Ca(2+)by the trivalent lanthanide ions (Yb(3+)) in a protozoan (Entamoeba histolytica) Ca(2+)-binding protein (EhCaBP), by NMR and thermodynamics. We have demonstrated, for the first time, how one can use in a combined fashion the utility of NMR and thermodynamics to have an insight to the relative binding specificities/affinity between Ca(2+) and Yb(3+). As revealed by the titration experiments, Yb(3+) displaces Ca(2+) from the four metal binding sites present in EhCaBP in a sequential manner. The study provides a structural origin for such a sequential Ca(2+) displacement by Yb(3+) in EhCaBP. 相似文献
14.
Complete and accurate NMR spectral assignment is a prerequisite for high-throughput automated structure determination of biological macromolecules. However, completely automated assignment procedures generally encounter difficulties for all but the most ideal data sets. Sources of these problems include difficulty in resolving correlations in crowded spectral regions, as well as complications arising from dynamics, such as weak or missing peaks, or atoms exhibiting more than one peak due to exchange phenomena. Smartnotebook is a semi-automated assignment software package designed to combine the best features of the automated and manual approaches. The software finds and displays potential connections between residues, while the spectroscopist makes decisions on which connection is correct, allowing rapid and robust assignment. In addition, smartnotebook helps the user fit chains of connected residues to the primary sequence of the protein by comparing the experimentally determined chemical shifts with expected shifts derived from a chemical shift database, while providing bookkeeping throughout the assignment procedure. 相似文献
15.
Sandra Ward 《Carbohydrate research》2009,344(6):808-3921
Tetratritylation of α-cyclodextrin (CD) and subsequent peracetylation of the partially tritylated mixture allowed the preparation and isolation of the symmetrical 6A,6B,6D,6E-tetratritylated α-CD in pure form. The 1H NMR spectra of the compound showed abnormal behaviour with the anomeric proton of one of the glycopyranosyl systems resonating below 3.0 ppm, which is exceptionally unusual. To understand this anomaly in the 1H NMR data, we performed a complete NMR analysis and using molecular modelling as a tool, we were able to obtain a conformation that can explain the observed NMR phenomenon. 相似文献
16.
17.
A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof‐of‐principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o‐succinyl benzoate synthase (OSBS). Among the highest‐scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L ‐Ala D/L ‐Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. 相似文献
18.
Likić VA Juranić N Macura S Prendergast FG 《Protein science : a publication of the Protein Society》2000,9(3):497-504
A single water molecule (w135), buried within the structure of rat intestinal fatty acid binding protein (I-FABP), is investigated by NMR, molecular dynamics simulations, and analysis of known crystal structures. An ordered water molecule was found in structurally analogous position in 24 crystal structures of nine different members of the family of fatty acid binding proteins. There is a remarkable conservation of the local structure near the w135 binding site among different proteins from this family. NMR cross-relaxation measurements imply that w135 is present in the I-FABP:ANS (1-sulfonato-8-(1')anilinonaphthalene) complex in solution with the residence time of >300 ps. Mean-square positional fluctuations of w135 oxygen observed in MD simulations (0.18 and 0.13 A2) are comparable in magnitude to fluctuations exhibited by the backbone atoms and result from highly constrained binding pocket as revealed by Voronoi volumes (averages of 27.0 +/- 1.8 A3 and 24.7 +/- 2.2 A3 for the two simulations). Escape of w135 from its binding pocket was observed only in one MD simulation. The escape process was initiated by interactions with external water molecules and was accompanied by large deformations in beta-strands D and E. Immediately before the release, w135 assumed three distinct states that differ in hydrogen bonding topology and persisted for about 15 ps each. Computer simulations suggest that escape of w135 from the I-FABP matrix is primarily determined by conformational fluctuations of the protein backbone and interactions with external water molecules. 相似文献
19.
Chill JH Louis JM Miller C Bax A 《Protein science : a publication of the Protein Society》2006,15(4):684-698
Nuclear magnetic resonance (NMR) studies of large membrane-associated proteins are limited by the difficulties in preparation of stable protein-detergent mixed micelles and by line broadening, which is typical of these macroassemblies. We have used the 68-kDa homotetrameric KcsA, a thermostable N-terminal deletion mutant of a bacterial potassium channel from Streptomyces lividans, as a model system for applying NMR methods to membrane proteins. Optimization of measurement conditions enabled us to perform the backbone assignment of KcsA in SDS micelles and establish its secondary structure, which was found to closely agree with the KcsA crystal structure. The C-terminal cytoplasmic domain, absent in the original structure, contains a 14-residue helix that could participate in tetramerization by forming an intersubunit four-helix bundle. A quantitative estimate of cross- relaxation between detergent and KcsA backbone amide protons, together with relaxation and light scattering data, suggests SDS-KcsA mixed micelles form an oblate spheroid with approximately 180 SDS molecules per channel. K(+) ions bind to the micelle-solubilized channel with a K(D) of 3 +/- 0.5 mM, resulting in chemical shift changes in the selectivity filter. Related pH-induced changes in chemical shift along the \"outer\" transmembrane helix and the cytoplasmic membrane interface hint at a possible structural explanation for the observed pH-gating of the potassium channel. 相似文献