首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
使用LI-6400便携式光合作用系统测定了美国亚利桑那州生物圈二号内5号荒漠植物(扁果菊、Trixis californica、粉蓝烟草、大黍、滨黎(后两种为C4、其余为C3植物))与5种热带雨林植物、胡椒、麒麟尾、花叶万年青、牵牛(均为C3植物)的光合作用对光照强度的反应。在一系列CO2浓度(350 ̄1500μmol·mol^-1)及不离体的前提下测定叶片光反应曲线的变化。所测植物均生长在高CO  相似文献   

3.
高浓度CO2对极大螺旋藻生长和光合作用的影响   总被引:7,自引:3,他引:4  
以极大螺旋藻作为实验材料,研究了高CO2浓度对极大螺旋藻的生长和光合作用效应,结果表明在高光强下(400μmolm^-2s^-1),高浓度CO2对其生长和光合作用有明显的影响。高浓度CO2培养下,辈放荡中的比生长速率是低浓度CO2培养的1.2倍;而在低光强下,高浓度CO2对其生长和光合作用无明显影响。两种不同CO2浓度和光强下培养的极大螺旋藻,在不同的生长时期,分别测定其P-I曲线,结果表明,低光强下培养的极大螺旋藻,在5d、8d、11d,两者的Ik、α值均无显著差异,Pmax在第5d、11d差异不显著,但在第8d有显著差异。而在高光强培养条件下,第8、11d通高浓度CO2培养的极大螺旋藻,其Pmax、α值明显大于通低浓度CO2培养的极大螺旋藻,但两者在第5d无明显差异。  相似文献   

4.
大气CO2浓度升高对光合作用的影响   总被引:35,自引:0,他引:35  
众多的事实表明,大气的CO_2浓度正不断地升高,从工业化革命时期的270—280ppm 上升到现在的350ppm 左右,平均每年以1.2—1.4ppm 的速率递增,预计21世纪中后期大气CO_2浓度将上升为现在的两倍。CO_2作为温室气体,必然给全球的生态环境带来深刻的变化,因此,植物如何对大气CO_2浓度的升高作出响应,已引起各国科学家的普遍关注,因此此课题已成为目前比较活跃的研究领域。CO_2是光合作用的原料,故弄清楚光合作用如何对大气CO_2浓度升高作出响应,对于了解未来大气CO_2浓度升高对植物的影响尤其重要。本文将讨论大气CO_2浓度升高对光合作用的影响,及其影响的机制。  相似文献   

5.
CO2深度倍增对牟氏角毛藻生长和光合作用的影响   总被引:1,自引:1,他引:0  
  相似文献   

6.
中国东北草原植物中的C3和C4光合作用途径   总被引:40,自引:8,他引:32  
殷立娟  王萍 《生态学报》1997,17(2):113-123
以光合作用关键羧化酶PEPC和RuBPC活性化,并且参照叶片CO补偿浓度,δ^13C值和叶片解剖结构特点来鉴定东北草原区233种植物的C3,或C4光全作用途径,这些植物隶属于144属73科,其中137种为首次鉴定。89种具有C4光合作用途径,隶属于55属17科;144种人有C3光俣作用途径;隶属于94属28在多数C4种分布在禾本科、莎草科、苋科和藜科。苋属、地肤属、狗昌属和虎尾草属中的均为C4植物  相似文献   

7.
验证光合作用需要CO2实验是初中生物学内容的重点,而且为高中生物的教学奠定基础,在整个中学生物学知识中占有十分重要的地位。这个实验按教材提示的做法所需的实验时间较长,整个实验过程无法在课堂上完成,教师往往只好事先做好或让部分学生参与实验过程,大部分学生只能观察到实验结果,  相似文献   

8.
盐胁迫对植物及其光合作用的影响(下)   总被引:1,自引:0,他引:1  
植物对盐胁迫的保护性响应上文我们谈及盐胁迫对植物及其光合作用的种种不利影响 ,然而植物对外界逆境的作用并非坐以待毙 ,如果它们对盐害毫无抵抗能力的话 ,那么它们就无法在盐渍地上生存 ,甚至会遭受灭顶之灾而绝灭。既然能生存下来 ,那么它们就必然会在自然选择过程中形成一定抗盐能力 ,以适应生存环境。正如我们在论述盐胁迫对植物生长发育的影响时所谈到的那样 ,植物对于大量涌入细胞内的盐离子具有一定区域化能力 ,能把大量盐离子集中到液泡中 ,这便可避免原生质和各种重要细胞器中酶与盐直接接触和相互作用 ,使酶的含量和活性不致于…  相似文献   

9.
Flaveria属C4种和C3—C4中间型种杂交一代的CO2交换特性   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
C3植物中C4途径的研究进展   总被引:31,自引:0,他引:31  
综述了C3植物中C4途径的发现及研究现状:阐述了C3植物中C4途径的几种作用机理;根据C3植物中C4途径的存在,探讨了改造C3植物的遗传特性;并展望了这一领域的研究前景。  相似文献   

12.
为了探讨大气CO2浓度升高对水华藻类的影响,利用水华蓝藻-拟柱胞藻作为实验材料,研究了CO2浓度升高对其生长生理和光合作用的影响,结果表明CO2浓度升高,导致拟柱胞藻的生物量、最大光合放氧速率、光合效率显著增加。当CO2浓度为700 mg/L以下,暗呼吸速率和光饱和点无明显影响,而CO2浓度为1000 mg/L时,暗呼吸速率和光饱和点显著提高。随着CO2浓度增加,藻细胞光合作用对无机碳的亲和力降低,同时胞外碳酸酐酶活性显著下降。这表明大气CO2浓度的增加,有利于拟柱胞藻的生长和光合,进而增加了水华发生的风险。  相似文献   

13.
CO2浓度升高对斜生栅藻生长和光合作用的影响   总被引:1,自引:1,他引:1  
升高大气中CO2 浓度可提高斜生栅藻的生物量和光合作用速率 ,对光合效率、暗呼吸速率、光饱和点和光系统Ⅱ的光化学效率 (Fv Fm)没有明显影响 ,但藻细胞光合作用对无机碳的亲和力降低  相似文献   

14.
15.
针对目前植物生理学教材中很少提及的C3-C4中间型植物,从概念、主要特征及研究价值方面作基本介绍,为课程讲解提供参考.  相似文献   

16.
大气中CO2含量增加对植物-昆虫关系的影响   总被引:13,自引:0,他引:13  
近两百年来,大气中CO2含量一直在不断地增加,而且增加的速度越来越快.CO2浓度升高有利于C3植物如水稻、小麦、大豆和棉花等光合作用和生产力的提高,但同时也减少了这些作物的含氮量,因而降低了它们对植食性昆虫的营养价值.现有的一些研究表明,在这种情况下,植食性昆虫会消耗更多的植物组织以补偿其对含氮物质的需要,导致昆虫对寄主植物为害的加重.  相似文献   

17.
在半干旱黄土丘陵区,以2年生盆栽山杏为材料,应用CIRAS-2型光合作用系统,测定了8个土壤水分梯度下山杏光合作用的CO2响应过程,并采用直角双曲线模型、指数方程和直角双曲线修正模型对其CO2响应数据进行拟合,分析了山杏光合作用与土壤水分的定量关系.结果表明:山杏CO2响应过程对土壤水分有明显的阈值响应特征.维持山杏叶片较高的光合速率(Pn)和羧化效率(CE)的土壤相对含水量(RWC)在46.3%~81.9%,在此水分范围内,光合作用没有发生明显的CO2饱和抑制现象;当RWC超出此范围,土壤水分升高或降低均明显降低山杏叶片的光合能力(Pnmax)、CE和CO2饱和点(CSP).在不同土壤水分条件下,3个模型对山杏CO2响应数据的模拟效果有明显差别.在46.3%~81.9%土壤水分范围内,3个模型均能较好地拟合山杏CO2响应过程及其特征参数CE、CO2补偿点(Γ)和光呼吸速率(Rp),其拟合精度均表现为直角双曲线修正模型>指数方程>直角双曲线模型;当土壤水分含量过高(RWC>81.9%)或过低(RWC<46.3%)时,只有直角双曲线修正模型能较好地拟合山杏CO2响应过程及其特征参数.RWC在46.3% ~81.9%范围内,山杏具有较高的光合作用效率;与传统直角双曲线模型和指数方程相比,直角双曲线修正模型具有更好的适用性.  相似文献   

18.
 为了探讨大气CO2浓度升高对水华藻类的影响,利用水华鱼腥藻(Anabena flos_aquae)作为实验材料,研究了大气CO2浓度加倍对其生长和光合作用的影响,结果显示大气CO2浓度升高导致水华鱼腥藻的生物量、光饱和光合速率、光合效率和光系统II的光化学效率(Fv/Fm)明显提高,但对暗呼吸速率和光饱和点没有明显影响。CO2加倍条件下藻细胞光合作用对无机碳的亲和力降低,表明其利用HCO-3的能力受到抑制。  相似文献   

19.
大气CO2浓度升高对植物根系的影响   总被引:3,自引:0,他引:3  
植物长期生长在CO2浓度不断升高的环境中,其结构和功能都将受到影响,这种影响不仅表现在植物的地上部分,同时也表现在植物的地下部分(根系),尤其是细根的长度、直径、产量、周转以及根与枝的分配模式等方面。植物根系结构和功能的改变影响植物地上部分和生态系统物质循环中的碳动态及土壤中碳库的变化。目前有关大气CO2浓度升高对根系动态影响的研究报道主要包括大气CO2浓度升高对根系结构(直径、分枝、长度、数量等)和根系生理(周转率、产量、碳分配模式等)的影响2个方面。目前,该领域研究还存在一些不足,例如在CO2浓度升高条件下,对植物根系内部的调控机制,以及由其引起的物质循环和能量流动的动态变化的了解较少;至今没有令人信服的证据说明大气CO2浓度升高使根系周转升高还是降低。今后应加强研究在CO2浓度升高条件下根系的周转变化和光合产物分配模式变化,CO2浓度升高和外界环境因素的共同作用对根系的影响,以及采用不同研究方法和研究对象在不同立地条件下开展升高CO2浓度对根系影响的对比研究等。  相似文献   

20.
构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号