首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basing on the results of the theoretical conformational analysis of the nonbonded and valence complexes of trypsin with substrate molecules, the catalytical act of the enzyme is described in details as a spontaneous process. Conformational aspects of interactions of trypsin with pancreatic trypsin inhibitor are analysed. The complete inhibition process and the geometry of the enzyme-inhibitor complex are described in details. The point amino acid replacements, which will provide for an exclusion of BPTI inhibition and will radically change the specificity of the enzyme are proposed.  相似文献   

2.
Theoretical conformational analysis of the tetrahedral complexes of trypsin with the N-acetyl-L-lysine methyl amide, which are formed at the acylation and the deacylation stages of the catalytical act has been carried out. The lowest energy conformations are shown to be productive ones. All favorable structures of N-acetyl-L-lysyl-trypsin and N-acetyl-L-arginyl-trypsin acylenzymes have been analysed. The global conformations of both complexes are found to be very similar with the structures providing for a transition to the second tetrahedral state. Conformations of the nonbonded, tetrahedral and acyl complexes with N-acetyl-L-lysine methyl amide are compared and the differences in orientation of atomic groups participating in the catalysis are revealed. All changes of optimal structures of the complexes indispensable for the catalytical process are shown to proceed in a spontaneous way without introduction of any intramolecular strain.  相似文献   

3.
The formation of the reactive enzyme-substrate complex of formate dehydrogenase has been investigated by molecular dynamics techniques accounting for different conformational states of the enzyme. Simulations revealed that the transport of substrate to the active site through the substrate channel proceeds in the open conformation of enzyme due to the crucial role of the Arg284 residue acting as a vehicle. However, formate binding in the active site of the open conformation leads to the formation of a nonproductive enzyme-substrate complex. The productive Michaelis complex is formed only in the closed enzyme conformation after the substrate and coenzyme have bound, when required rigidity of the binding site and reactive formate orientation due to interactions with Arg284, Asn146, Ile122, and His332 residues is attained. Then, the high occupancy (up to 75%) of the reactive substrate-coenzyme conformation is reached, which was demonstrated by hybrid quantum mechanics/molecular mechanics simulations using various semiempirical Hamiltonians.  相似文献   

4.
Recent studies indicate that a fraction of the information contained in an amino acid sequence may be sufficient for specifying a native protein structure. An earlier alanine-scanning experiment conducted on bovine pancreatic trypsin inhibitor (BPTI; 58 residues) suggested that if cumulative mutations have additive effects on protein stability, a native protein structure could be built from BPTI sequences that contained many alanine residues distributed throughout the protein. To test this hypothesis, we designed and produced six BPTI mutants containing from 21 to 29 alanine residues. We found that the melting temperature of mutants containing up to 27 alanine residues (48 % of the total number of residues) could be predicted quite well by the sum of the change in melting temperature for the single mutations. Additionally, these same mutants folded into a native-like structure, as judged by their cooperative thermal denaturation curves and heteronuclear multiple quantum correlation (HMQC) NMR spectra. A BPTI mutant containing 22 alanine residues was further shown by 2D and 3D-NMR to fold into a structure very similar to that of native BPTI, and to be a functional trypsin inhibitor. These results provide insight into the extent to which native protein structure and function can be achieved with a highly simplified amino acid sequence.  相似文献   

5.
Intramolecular pepsinogen activation is inhibited either by pepstatin, a potent pepsin inhibitor, or by purified globin from hemoglobin, a good pepsin substrate. Also, pepsinogen at pH 2 can be bound to a pepstatin-Sepharose column and recovered as native zymogen upon elution in pH 8 buffer. Kinetic studies of the globin inhibition of pepsinogen activation show that globin binds to a pepsinogen intermediate. This interaction gives rise to competitive inhibition of intramolecular pepsinogen activation. The evidence presented in this paper suggests that pepsinogen is converted rapidly upon acidification to the pepsinogen intermediate delta. In the absence of an inhibitor, the intermediate undergoes conformational change to bind the activation peptide portion of this same pepsinogen molecule in the active center to form an intramolecular enzyme-substrate complex (intermediate theta). This is followed by the intramolecular hydrolysis of the peptide bond between residues 44 and 45 of the pepsinogen molecule and the dissociation of the activation peptide from the pepsin. Intermediate delta apparently does not activate another pepsinogen molecule via an intermolecular process. Neither does intermediate delta hydrolyze globin substrate.  相似文献   

6.
A tertiary structure prediction is described using Monte Carlo simulated annealing for the peptide fragment corresponding to residues 16-36 of bovine pancreatic trypsin inhibitor (BPTI). The simulation starts with randomly chosen initial conformations and is performed without imposing experimental constraints using energy functions given for generic interatomic interactions. Out of 20 simulation trials, seven conformations show a sheet-like structure--two strands connected by a turn--although this sheet-like structure is not as rigid as that observed in native BPTI. It is also shown that these conformations are mostly looped and exhibit a native-like right-handed twist. Unlike the case with the C-peptide of RNase A, no conspicuous alpha-helical structure is found in any of the final conformations obtained in the simulation. However, the lowest-energy conformation does not resemble exactly the native structure. This indicates that the rigid beta-sheet conformation of native BPTI merely corresponds to a local minimum of the energy function if the fragment with residues 16-36 is isolated from the native protein. A statistical analysis of all 20 final conformations suggests that the tendency for the peptide segments to form extended beta-strands is strong for those with residues 18-24, and moderate for those with residues 30-35. The segment of residues 25-29 does not tend to form any definite structure. In native BPTI, the former segments are involved in the beta-sheet and the latter in the turn. A folding scenario is also speculated from this analysis.  相似文献   

7.
SecB is a homotetrameric, cytosolic chaperone that forms part of the protein translocation machinery in Escherichia coli. We have investigated the bound-state conformation of a model protein substrate of SecB, bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin-labeling and pyrene fluorescence methods. BPTI is a 58-residue protein and contains three disulfide groups between residues 5 and 55, 14 and 38, as well as 30 and 51. Mutants of BPTI that contained only a single disulfide were reduced, and the free cysteines were labeled with either thiol-specific spin labels or pyrene maleimide. The relative proximity of the labeled residues was studied using either electron spin resonance spectroscopy or fluorescence spectroscopy. The data suggest that SecB binds a collapsed coil of reduced unfolded BPTI, which then undergoes a structural rearrangement to a more extended state upon binding to SecB. Binding occurs at multiple sites on the substrate, and the binding site on each SecB monomer accommodates less than 21 substrate residues. In addition, we have labeled four solvent-accessible cysteine residues in the SecB tetramer and have investigated their relative spatial arrangement in the presence and absence of the substrate protein. The electron spin resonance data suggest that these cysteine residues are in close proximity (15 A) when no substrate protein is bound but move away to a distance of greater than 20 A when SecB binds substrate. This is the first direct evidence of a conformational change in SecB upon binding of a substrate protein.  相似文献   

8.
The linear sequence of bovine pancreatic trypsin inhibitor (BPTI) has been assembled by stepwise Fmoc solid-phase peptide synthesis on a polyethylene glycol-polystyrene (PEG-PS) graft support with p-alkoxybenzyl ester anchoring. Similar methods were used to prepare two analogues, the first with all six half-cystine (Cys) residues replaced by alpha-amino-n-butyric acid (Abu), and the second with replacement of Abu at four Cys positions while retaining the native pairing between positions 14 and 38. Following cleavage from the support, the linear molecules (reduced form) were purified by semipreparative reversed-phase high performance liquid chromatography (HPLC). The native structure of BPTI was then formed by oxidation of a dilute solution of the protein at pH 8.7 in the presence of oxidized glutathione. The BPTI analogue with one disulfide bridge was obtained following treatment with dimethyl sulfoxide (DMSO)-pH 6 buffer (1:9). Overall yields of homogeneous proteins were 2-4%, and further characterization was provided by amino acid analysis, sequencing, ion electrospray mass spectrometry, analytical HPLC, and capillary zone electrophoresis (CZE). Purified synthetic BPTI with the native sequence was indistinguishable from natural material by the analytical and biophysical criteria applied, including circular dichroism (CD) spectra and inhibition of trypsin action. Studies are in progress to evaluate conformational features of the analogues which respectively lack two, or all three, of the native disulfide bridges.  相似文献   

9.
The roles of aromatic residues in determining the folding pathway of bovine pancreatic trypsin inhibitor (BPTI) were analyzed mutationally by examining the distribution of disulfide-bonded intermediates that accumulated during the refolding of protein variants in which tyrosine or phenylalanine residues were individually replaced with leucine. The eight substitutions examined all caused significant changes in the intermediate distribution. In some cases, the major effect was to decrease the accumulation of intermediates containing two of the three disulfides found in the native protein, without affecting the distribution of earlier intermediates. Other substitutions, however, led to much more random distributions of the intermediates containing only one disulfide. These results indicate that the individual residues making up the hydrophobic core of the native protein make clearly distinguishable contributions to conformation and stability early in folding: The early distribution of intermediates does not appear to be determined by a general hydrophobic collapse. The effects of the substitutions were generally consistent with the structures of the major intermediates determined by NMR studies of analogs, confirming that the distribution of disulfide-bonded species is determined by stabilizing interactions within the ordered regions of the intermediates. The plasticity of the BPTI folding pathway implied by these results can be described using conformational funnels to illustrate the degree to which conformational entropy is lost at different stages in the folding of the wild-type and mutant proteins.  相似文献   

10.
The field of proteinomimetics utilizes peptide-based molecules to mimic native protein functions. We describe a novel general method for mimicking proteins by small cyclic peptides for the purpose of drug design, and demonstrate its applicability on bovine pancreatic trypsin inhibitor (BPTI). These unique cyclic peptides, which both embody discontinuous residues of proteins in their bio-active conformation and ensure an induced fit, may overcome some of the pharmacological drawbacks attributed to proteins and peptides. This method, which we call the backbone cyclic (BC) proteinomimetic approach, combines backbone cyclization of peptides with a suitable selection method, cycloscan. Following this procedure, we have prepared a bicyclic nonapeptide, which mimics the binding region of BPTI. The X-ray crystal structure of the complex trypsin:mimetic, as well as kinetic studies, show that the BPTI mimetic binds to the specificity pocket of trypsin in a similar manner to BPTI. Inhibition measurements of various constructs revealed that backbone cyclization imposed the conformation crucial to binding.  相似文献   

11.
The kinetic roles of the partially folded, intermediate protein species with two disulphide bonds in folding and unfolding of the pancreatic trypsin inhibitor have been investigated further. Formation of a second disulphide bond between Cys5 and Cys55 during refolding of the reduced inhibitor, which would yield the species with the 30–51 and 5–55 disulphide bonds and, possibly, the native-like conformation of the protein, is not significant. Instead, three other second disulphide bonds (5–14, 5–38 and 14–38) are formed approximately 105 times more readily, but each of these two-disulphide species then rearranges intramolecularly to the native-like, two-disulphide intermediate. Therefore, the reduced protein does not simply form sequentially the three disulphide bonds of the native state. Unfolding of the native state takes place by the reverse of this process.The kinetic importance for folding and unfolding of this transition between two-disulphide intermediates under the conditions used here was illustrated experimentally by a modified form of the inhibitor in which the thiols of Cys14 and Cys38 were blocked irreversibly. In the folded conformation, this modified protein is more stable to unfolding than normal, but after unfolding cannot readily regain the native-like conformation, because Cys14 or Cys38 are required to be involved in disulphide bonds during the interconversion of the two-disulphide intermediates.Some conception of the conformational transitions that take place at each stage of the folding transition may be inferred from the relative propensities of the six cysteine residues to make or rearrange disulphide bonds. It is concluded that the inhibitor probably does not refold by sequential adoption of the native conformation by the unfolded polypeptide chain. Instead, it appears that essentially all elements of the native conformation are attained simultaneously in the final stage of folding, within an unstable and flexible, yet relatively compact, form of the entire polypeptide chain produced by weak interactions between groups distant in the primary structure.  相似文献   

12.
The electrostatic effects on the secondary structure forming tendencies of a peptide fragment with residues 16-36 of bovine pancreatic trypsin inhibitor, BPTI(16-36), are studied using Monte Carlo simulated annealing simulations. We consider three dielectric functions epsilon(r) of distance r: constant dielectric function (epsilon = 2; strong electrostatic interactions) and sigmoidal functions varying from epsilon(0) = 2 to epsilon(infinity) = 47 (intermediate) and to epsilon(infinity) = 78 (weak). Simulations with epsilon = 2 suggest that this peptide exhibits a significant propensity for beta-strand formations in accordance with a beta-sheet structure of the relevant segment in native BPTI. The tendency for alpha-helix formations becomes almost comparable with that of beta-strands in the simulation with epsilon(infinity) = 47, and there appears no appreciable conformational propensity for this case. Finally, the results with epsilon(infinity) = 78 generate low-energy conformations with conspicuous alpha-helices. These findings suggest the possibility that the change in electrostatic interactions can be the key factor for the conformational transitions of peptides between alpha-helix and beta-sheet that have recently been observed in experiments. These changes in electrostatic interactions can arise from those in various environmental factors such as conformations of the rest of the protein molecule and solvent conditions.  相似文献   

13.
Folding of the twisted beta-sheet in bovine pancreatic trypsin inhibitor   总被引:2,自引:0,他引:2  
The dominant role of local interactions has been demonstrated for the formation of the strongly twisted antiparallel beta-sheet structure consisting of residues 18-35 in bovine pancreatic trypsin inhibitor. Conformational energy minimization has indicated that this beta-sheet has a strong twist even in the absence of the rest of the protein molecule. The twist is maintained essentially unchanged when energy minimization is carried out by starting from the native conformation. By starting from a nontwisted beta-sheet conformation of residues 18-35, a strongly twisted structure (higher in energy than the native) is obtained. The high twist of the native-like beta-sheet is a consequence of its amino acid sequence, but it is enhanced strongly by interchain interactions that operate within the beta-sheet. The existence of the twisted beta-sheet structure does not require the presence of a disulfide bond between residue 14 and residue 38. It actually may facilitate the formation of this bond. Therefore, it is likely that the beta-sheet structure forms during an earlier stage of folding than the formation of this disulfide bond. This study provides an example of the manner in which conformational energy calculations can be used to provide information about the probable pathway of the folding of a protein.  相似文献   

14.
F Mancia  G A Smith  P R Evans 《Biochemistry》1999,38(25):7999-8005
X-ray crystal structures of methylmalonyl-CoA mutase in complexes with substrate methylmalonyl-CoA and inhibitors 2-carboxypropyl-CoA and 3-carboxypropyl-CoA (substrate and product analogues) show that the enzyme-substrate interactions change little during the course of the rearrangement reaction, in contrast to the large conformational change on substrate binding. The substrate complex shows a 5'-deoxyadenine molecule in the active site, bound weakly and not attached to the cobalt atom of coenzyme B12, rotated and shifted from its position in the substrate-free adenosylcobalamin complex. The position of Tyralpha89 close to the substrate explains the stereochemical selectivity of the enzyme for (2R)-methylmalonyl-CoA.  相似文献   

15.
Conformational energy calculations on the N-acetyl-N′-methylamides of dehydroalanine and N-methyldehydroalanine indicate that their conformational behavior is very different from that of the corresponding saturated compounds. The conformational data in the literature from x-ray and nmr investigations on peptides containing α,β-unsaturated residues are discussed on the basis of these theoretical results.  相似文献   

16.
A genetic screening procedure has been developed to identify mutant forms of bovine pancreatic trypsin inhibitor (BPTI) that can fold to an active conformation but are inactivated more rapidly than the wild-type protein. Small cultures of Escherichia coli containing plasmids with mutagenized BPTI genes were grown in microtiter plates, lysed, and treated with dithiothreitol (DTT). Under these conditions, unfolding and inactivation of the wild-type protein has a half-time of about 10 hours. Variants of BPTI that are inactivated within 1 hour were identified by adding trypsin and a chromogenic substrate. Approximately 11,000 mutagenized clones were screened in this way and 75 clones that produce proteins that can fold but are inactivated by DTT were isolated. The genes coding for 68 "DTT-sensitive" mutant proteins were sequenced, and 25 different single amino acid substitutions at 15 of the 58 residues of the protein were identified. Most of the altered residues are largely buried in the core of the native wild-type structure and are highly conserved among proteins homologous to BPTI. These results indicate that a large fraction of the sequence of the protein contributes to the kinetic stability of the active conformation, but it also appears that substitutions can be tolerated at most sites without completely preventing folding. Because this genetic screen is based on changes in folding energetics, further studies of the isolated mutants are expected to provide information about the roles of the altered residues in folding and unfolding.  相似文献   

17.
A set of conformations was shown to be characteristic of the free-state spatial structure of substrate-like inhibitor JG-365 for aspartic protease from HIV-1. Among them, the lowest-energy conformations have a folded form of the peptide backbone. The inhibitor has a noncleavable hydroxyethylamine group with an additional chiral center in its structure. Our calculations showed that only the S-isomer of the inhibitor displays conformational characteristics that practically coincide with those of the native substrate for HIV-1 protease. One of the calculated conformations with a completely extended main chain and a relative energy of 9.5 kcal/mol very closely mimics the experimentally observed structure of the inhibitor in the enzyme-inhibitor complex. The realization of this structure is unlikely for a free inhibitor, because it has only a small number of interresidual noncovalent interactions in the extended conformation; these are presumably compensated for by intermolecular interactions at the active site of the enzyme.  相似文献   

18.
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.  相似文献   

19.
An analogue of the bovine pancreatic trypsin inhibitor (BPTI) folding intermediate that contains only the disulphide bond between Cys5 and Cys55 has been prepared in Escherichia coli by protein engineering methods, with the other four Cys residues replaced by Ser. Two-dimensional 1H nuclear magnetic resonance studies of the analogue have resulted in essentially complete resonance assignments of the folded form of the protein. The folded protein has a compact conformation that is structurally very similar to that of native BPTI, although there are subtle differences and the folded conformation is not very stable. Approximately half of the protein molecules are unfolded at 3 degrees C, and this proportion increases at higher temperatures. The folded and unfolded conformations are in slow exchange. The conformational properties of the analogue can explain many aspects of the kinetic role that the normal (5-55) intermediate plays in the folding of BPTI.  相似文献   

20.
The proton NMR spectra and role in peptide binding of carboxyl-terminal and NH2-terminal neurophysin residues were studied by preparation of bovine neurophysin-I derivatives from which residues 90-92 had been cleaved by carboxypeptidase or residues 1-8 excised by trypsin. The carboxypeptidase-treated protein showed normal peptide-binding behavior. NMR comparisons of this derivative and the native protein allowed identification of proton resonances associated with residues 89-92, confirmed a lack of functional role for this region of the protein, and permitted new observations on the behavior of neurophysin's aromatic residues. The trypsin-treated protein bound peptide with an affinity only 1/50 that of the native protein at pH 6 but evinced the same binding specificity and pH dependence of binding as the native protein. These results argued against direct interaction of residues in the 1-8 sequence with bound peptide and for a role for these residues, particularly Arg-8, in conformational stabilization of the active site; this role is held to be additional to the reported influence of 1-8 on dimerization. NMR comparisons of the trypsin product and native protein allowed preliminary assignment of a set of alkyl proton resonances to residues within the 1-8 sequence and were compatible with a restricted environment for Arg-8. Conformational differences between native and trypsin-treated proteins were manifest particularly by differences in the NMR spectra of Phe and Tyr-49 ring protons. The behavior of Phe ring protons was consistent with the reported decreased dimerization constant of the trypsin product and suggested participation of Phe-22 or -35 in dimerization. The behavior of Tyr-49 provided the first direct evidence of a change in secondary or tertiary structure associated with excision of residues 1-8. Suggested mechanisms by which this conformational change reduces binding include a direct effect on Tyr-49 and/or a conformational rearrangement of active site residues near Tyr-49.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号