首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical mapping of human chromosome 16 has been undertaken using somatic cell hybrid DNAs as templates for polymerase chain reaction (PCR) deletion analysis of sequence tagged sites (STSs). A panel of 29 somatic cell hybrids was analyzed, confirming and refining previous chromosome 16 breakpoint orders and distinguishing between the locations of breakpoints in new hybrids. Ten STS markers were coamplified in three multiplex reactions allowing the rapid, simultaneous deletion analysis of nine different loci. The locations of the protamine (PRM1), sialophorin (SPN), complement component receptor 3A (CR3A), NAD(P)H menadione oxidoreductase 1 (NMOR1), and calbindin (CALB2) genes were refined.  相似文献   

2.
F G Barr  J Holick  L Nycum  J A Biegel  B S Emanuel 《Genomics》1992,13(4):1150-1156
A characteristic translocation t(2;13)(q35;q14) has been previously identified in the pediatric soft tissue tumor alveolar rhabdomyosarcoma. We have assembled a panel of lymphoblast, fibroblast, and somatic cell hybrid cell lines with deletions and unbalanced translocations involving chromosome 2 to develop a physical map of the distal 2q region. Twenty-two probes were localized on this physical map by Southern blot analysis of the mapping panel. The position of these probes with respect to the t(2;13) rhabdomyosarcoma breakpoint was then determined by quantitative Southern blot analysis of an alveolar rhabdomyosarcoma cell line with two copies of the derivative chromosome 13 and one copy of the derivative chromosome 2 and by analysis of somatic cell hybrid clones derived from an alveolar rhabdomyosarcoma cell line. We demonstrate that the t(2;13) breakpoint is situated within a map interval delimited by the distal deletion breakpoint in fibroblast line GM09892 and the t(X;2) breakpoint in somatic cell hybrid GM11022. Furthermore, from a comparison of our data with the linkage map of the syntenic region on mouse chromosome 1, we conclude that the t(2;13) breakpoint is most closely flanked by loci INHA and ALPI within this map interval.  相似文献   

3.
A panel of 29 sequence tagged sites (STSs) covering the long arm of chromosome 22 has been assembled. STS primer pairs were synthesized using available chromosome 22 sequence derived from the GenBank and EMBL DNA sequence databases, as well as published cDNA and genomic sequence, or from previously published and communicated primer pairs. Each STS was optimized for the polymerase chain reaction using a chromosome 22-only hybrid and human genomic DNA. Further STS content analysis on a panel of somatic cell hybrids that incorporated two chromosome 22 translocations resulted in the mapping of the X-box binding protein (XBP), D22S156, and transcobalamin II (TCN2) genes to 22q11-q13.1. The panel of STSs was used for the rapid determination of the STS content and thus the chromosomal DNA content of a new irradiation hybrid.  相似文献   

4.
5.
Sequence-tagged sites (STSs) were developed for three loci of uncertain X chromosomal localization (DXS122, DXS137, and DXS174) and were used to seed YAC contigs. Two contigs now total about 3.3 Mb formatted with 34 STSs. One contains DXS122 and DXS174 within 250 kb on single YACs; it is placed in Xq21.3–q22.1 by FISH analysis, which is consistent with somatic cell hybrid panel analyses and with the inclusion of a probe that detects polymorphism at the DXS118 locus already assigned to that general region. The other contig, which contains DXS137, is in Xq22.2 by FISH, consistent with cell hybrid analyses and with the finding that it covers the human COL4A5 and COL4A6 genes known to be in that vicinity. In addition to extending the cloned coverage of this portion of the X chromosome, these materials should aid, for example, in the further analysis of Alport syndrome.  相似文献   

6.
Basic to the development of long-range physical maps of DNA are the detection and localization of landmarks within recombinant clones. Sequence-tagged sites (STSs), which are short stretches of DNA that can be specifically detected by the polymerase chain reaction (PCR), can be used as such landmarks. Our interest is to construct physical maps of whole human chromosomes by localizing STSs within yeast artificial chromosome (YAC) clones. Here we describe a generalized strategy for the systematic generation of large numbers of STSs specific for human chromosome 7. These STSs can be detected by PCR assays developed following the sequencing of anonymous pieces of chromosome 7 DNA, which was derived from flow-sorted chromosomes or from lambda clones made from DNA of a human-hamster hybrid cell line. Our approach for STS generation is tailored for the development of PCR assays capable of screening a large YAC library. In this study, we report the generation of 100 new STSs specific to human chromosome 7.  相似文献   

7.
Somatic cell hybrids retaining the deleted chromosome 17 from 15 unrelated Smith-Magenis syndrome (SMS) [del(17)(p11.2p11.2)] patients were obtained by fusion of patient lymphoblasts with thymidine kinase-deficient rodent cell lines. Seventeen sequence-tagged sites (STSs) were developed from anonymous markers and cloned genes mapping to the short arm of chromosome 17. The STSs were used to determine the deletion status of these loci in these and four previously described human chromosome 17-retaining hybrids. Ten STSs were used to identify 28 yeast artificial chromosomes (YACs) from the St. Louis human genomic YAC library. Four of the 17 STSs identified simple repeat polymorphisms. The order and location of deletion breakpoints were confirmed and refined, and the regional assignment of several probes and cloned genes were determined. The cytogenetic band locations and relative order of six markers on 17p were established by fluorescence in situ hybridization mapping to metaphase chromosomes. The latter data confirmed and supplemented the somatic cell hybrid results. Most of the hybrids derived from [del(17)(p11.2p11.2)] patients demonstrated a similar pattern of deletion for the marker loci and were deleted for D17S446, D17S258, D17S29, D17S71, and D17S445. However, one of them demonstrated a unique pattern of deletion. This patient is deleted for several markers known to recognize a large DNA duplication associated with Charcot-Marie-Tooth (CMT) disease type 1A. These data suggest that the proximal junction of the CMT1A duplication is close to the distal breakpoint in [del(17)(p-11.2p11.2)] patients.  相似文献   

8.
Five clones, containing polymorphic CA-repeat sequences, have been isolated from a specific human chromosome 21 phage library and have been localised to band q21 of chromosome 21 using a somatic cell hybrid panel. These highly repetitive sequences (D21S1263, D21S1264, D21S1415, D21S1417 and D21S1420) have been characterised in the CEPH reference parents and have heterozygosities ranging from 0.30 to 0.81 and an average polymorphism information content (PIC) of 0.62. The relative order of these markers, based on the somatic cell hybrid panel, is cen-D21S1417, D21S1420-D21S1263, D21S1415-D21S1264-tel. The most polymorphic marker (D21S1264) has been included in the chromosome 21 genetic map. They have also been localised in the CEPH/ Généthon YAC panel, providing a refined localisation of these polymorphic sequences. These five CA-repeat markers should provide a better characterisation of the q21 region of chromosome 21.  相似文献   

9.
M J Wagner  Y Ge  M Siciliano  D E Wells 《Genomics》1991,10(1):114-125
We have characterized a panel of somatic cell hybrids that carry fragments of human chromosome 8 and used this panel for the regional localization of anonymous clones derived from a chromosome 8 library. The hybrid panel includes 11 cell lines, which were characterized by Southern blot hybridization with chromosome 8-specific probes of known map location and by fluorescent in situ hybridization with a probe derived from a chromosome 8 library. The chromosome fragments in the hybrid cell lines divide the chromosome into 10 intervals. Using this mapping panel, we have mapped 56 newly derived anonymous clones to regions of chromosome 8. We have also obtained physical map locations for 7 loci from the genetic map of chromosome 8, thus aligning the genetic and physical maps of the chromosome.  相似文献   

10.
Van der Woude syndrome (VWS) is the most frequent form of syndromic clefting. Linkage analysis has localized the gene between D1S245 and D1S414, an interval of 4.1 cM with the following order of loci: centromere–D1S245/D1S471–D1S491–D1S205–D1S414–telomere. A microdeletion around D1S205 aided in narrowing the critical region to D1S491–D1S414 by heterozygosity testing. In this study, the location was refined by detection of a recombinant with D1S205 in a new family, indicating that VWS lies between D1S491 and D1S205, a 1.6-cM interval. A roughly 3.5-Mb YAC contig was built from D1S245 through D1S414, encompassing the interval D1S491–D1S205 in level 1 or level 2 paths. Clones were assembled by sequence tagged site (STS) content using the five polymorphic markers from above, four novel STSs identified from YAC ends, and a new STS derived from probe CRI-L461 (D1S70). D1S70 was assigned to the critical region. One single YAC, yCEPH785B2, contains both flanking STSs (D1S491, D1S205). STS content mapping suggests neither chimerism nor deletion of yCEPH785B2 but does suggest that the maximum size of the critical region is approximately 850 kb. All STSs were tested for their presence on a somatic cell hybrid containing the microdeleted chromosome 1 as the sole human chromosome 1 component. Both the proximal and distal ends of the microdeletion mapped to the 850-kb YAC, yCEPH785B2. Therefore, the microdeletion overlapped the critical region, confirming the genetic recombinant data.  相似文献   

11.
A Sequence-Tagged Site Map of Human Chromosome 11   总被引:1,自引:0,他引:1  
We report the construction of 370 sequence-tagged sites (STSs) that are detectable by PCR amplification under sets of standardized conditions and that have been regionally mapped to human chromosome 11. DNA sequences were determined by sequencing directly from cosmid templates using primers complementary to T3 and T7 promoters present in the cloning vector. Oligonucleotide PCR primers were predicted by computer and tested using a battery of genomic DNAs. Cosmids were regionally localized on chromosome 11 by using fluorescence in situ hybridization or by analyzing a somatic cell hybrid panel. Additional STSs corresponding to known genes and markers on chromosome 11 were also produced under the same series of standardized conditions. The resulting STSs provide uniform coverage of chromosome 11 with an average spacing of 340 kb. The DNA sequence determined for use in STS production corresponds to about 0.1% (116 kb) of chromosome 11 and has been analyzed for the presence of repetitive sequences, similarities to known genes and motifs, and possible exons. Computer analysis of this sequence has identified and therefore mapped at least eight new genes on chromosome 11.  相似文献   

12.
Forty-nine clones derived by microdissection of a schizophrenia-associated t(1;11)(q42.1;q14.3) breakpoint region have been assigned by somatic cell hybrid mapping to seven discrete intervals on the long arm of human chromosome 11. Eleven of the clones were shown to map to a small region immediately distal to the translocation breakpoint on 11q.A 3-Mb contiguous clone map of this region was established by isolation of corresponding YAC recombinants. The contig was oriented and shown to traverse the translocation breakpoint by FISH and microsatellite marker analysis. This contig will facilitate the isolation of candidate sequences whose expression may be affected by the translocation.  相似文献   

13.
Sequence-tagged sites (STSs) derived from end fragments of chromosome-specific yeast artificial chromosomes (YACs) can facilitate the assembly of an overlapping YAC/STS map. Contigs form rapidly by iteratively screening YAC collections with end-fragment STSs from YACs that have not yet been detected by any previous STS. The map is rendered rapidly useful during its assembly by incorporating supplementary STSs from genes and genetic linkage probes with known locations. Methods for the systematic development and testing of the end-fragments STSs are given here, and a group of 100 STSs is presented for the X chromosome. The mapping strategy is shown to be successful in simulations with portions of the X chromosome already largely mapped into overlapping YACs by other means.  相似文献   

14.
We have employed an irradiation and fusion procedure to generate somatic cell hybrids containing various fragments of the short arm of human chromosome 12 using a 12p-only hybrid (M28) as starting material. For the initial identification of hybrids retaining human DNA, nonradioactive in situ hybridization was performed. Seventeen cell lines appeared to contain detectable amounts of human material. Detailed characterization of these hybrids by Southern blot analysis and chromosomal in situ suppression hybridization (chromosome painting), using hybrid DNAs as probes after Alu element-mediated PCR, resulted in a hybrid panel encompassing the entire chromosome 12p arm. This panel will provide a valuable resource for the rapid isolation of region-specific DNA markers. In addition, this panel may be useful for the characterization of chromosome 12 aberrations in, e.g., human germ cell tumors.  相似文献   

15.
We have characterized a panel of somatic cell hybrid cell lines which contain different portions of human chromosome 10. Genomic DNA from the somatic cell hybrids was tested for hybridization with each of an ordered set of probes used previously to construct a genetic map of chromosome 10, as well as several additional probes, previously localized by in situ hybridization. Hybridization of an unmapped probe to the cell line DNAs can be used to determine its most likely position on the chromosome relative to the mapped set of probes. Genomic DNA from two of the cell lines has been used to construct region-specific cosmid and bacteriophage libraries, and clones derived from these libraries were localized by hybridization to the panel of hybrid cell lines. Several of these probes reveal restriction fragment length polymorphisms which have been genetically mapped. Three of the probes map near the locus for multiple endocrine neoplasia type 2A, and one of these probes, BG-JC353 (D10S167), maps between RBP3 and TB14.34 (D10S34). Another probe, CRI-J282 (D10S104), is close to the FNRB locus. The panel of hybrid cell lines is thus useful for rapidly localizing unmapped probes and as a source of DNA for the construction of recombinant libraries derived from specific regions of the chromosome.  相似文献   

16.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

17.
A Radiation Hybrid Map of the BRCA1 Region   总被引:1,自引:1,他引:0       下载免费PDF全文
A locus on chromosome 17q, designated “BRCA1,” has been identified as a predisposition gene for breast cancer. A panel of chromosome 17–specific radiation-reduced somatic cell hybrid clones has been assembled for high-resolution mapping of chromosome 17. A series of 35 markers, known to span the BRCA1 locus, were tested against this hybrid panel by PCR assays. Statistical analysis of these data yields a BRCA1 radiation hybrid map at a density sufficient to initiate YAC cloning and pulsed-field gel electrophoretic mapping of the candidate region. In addition, many of the markers reveal genetic polymorphisms and may be tested in breast cancer families and in loss-of-heterozygosity studies of sporadic breast cancers to better define the BRCA1 gene candidate region.  相似文献   

18.
The human gene encoding differentiation-stimulating factor (D-factor) has previously been isolated and shown to be identical to leukemia inhibitory factor (LIF). We have determined a fine structure map of approximately 20-kb surrounding the D-factor/LIF gene. Southern blot analysis using a somatic cell hybrid panel shows that the gene maps to chromosome 22. D-factor/LIF was further sublocalized to 22q11.2----q13.1, distal to a Ewing sarcoma (ES) breakpoint, using a second somatic cell hybrid panel. Probes to the 5' and 3' regions of the locus and the cDNA were used to screen for restriction fragment length polymorphisms, but none were detected. Analysis by pulsed field gel electrophoresis suggests that D-factor/LIF is not near the ES breakpoint.  相似文献   

19.
The generation of panels of somatic cell hybrids specific for chimpanzee, gorilla, orangutan, and olive baboon is reported. The chromosome content of each hybrid clone was characterized using reverse painting on human normal metaphases and by the use of appropriate sequence tag sites (STSs), one for each chromosome arm. These resources can be advantageously exploited in the characterization of chromosome architecture of different primate species, with special reference to the discrimination of inter- and intra-chromosomal arrangement of segmental duplications.  相似文献   

20.
Previous investigations of the pediatric soft tissue tumor alveolar rhabdomyosarcoma have identified a characteristic translocation t(2;13)(q35;q14). We have employed a physical mapping strategy to localize the site of this translocation breakpoint on chromosome 13. Using a panel of somatic cell hybrid and lymphoblast cell lines with deletions and unbalanced translocations involving chromosome 13, we have mapped numerous probes from the 13q12-q14 region and demonstrate that this region is divisible into five physical intervals. These probes were then mapped with respect to the t(2;13) rhabdomyosarcoma breakpoint by quantitative Southern blot analysis of an alveolar rhabdomyosarcoma cell line with two copies of the derivative chromosome 13 and one copy of the derivative chromosome 2. Our findings demonstrate that the t(2;13) breakpoint is localized within a map interval delimited by the proximal deletion breakpoints in lymphoblast lines GM01484 and GM07312. Furthermore, the breakpoint is most closely flanked by loci D13S29 and TUBBP2 within this map interval. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the alveolar rhabdomyosarcoma translocation. In addition, this physical map will permit rapid determination of the proximity of new cloned sequences to the translocation breakpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号