首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The discovery of the organizer by Spemann and Mangold in 1924 raised two kinds of questions: those about the means of patterning the chordate body axis and those about the mechanisms of cell determination by induction. Some researchers, stressing the second, have suggested over the years that the organizer is poorly named and doesn't really organize because inducers act permissively, because they are not unique to the organizer, and because multipotent responsive cells develop complex local differentiations under artificial conditions. Furthermore, with the discovery of meso-endoderm induction in 1969, the possibility arose that this earlier induction generates as much organization as, or more than, does the organizer itself. Evidence is summarized in this article that the organizer does fulfill its title with regard to pattern formation: it adds greatly to embryonic organization by providing information about time, place, scale, and orientation for development by nearby members of the large multipotent competence groups surrounding the organizer. Embryos having smaller or larger organizers due to experimental intervention develop defective axial organization. Without an organizer the embryo develops no body axis and none of the four chordate characters: the notochord, gill slits, dorsal hollow nerve chord, and post-anal tail. For normal axis formation, the organizer's tripartite organization is needed. Each part differs in inducers, morphogenesis, and self-differentiation. The organizer is a trait of development of all members of the chordate phylum. In comparison to hemichordates, which constitute a phylum with some similarities to chordates, the chordamesoderm part is unique to the chordate organizer (the trunk-tail organizer). Its convergent extension displaces the gastrula posterior pole from alignment with the animal-vegetal axis and generates a new anteroposterior axis orthogonal to this old one. Once it has extended to full length, its signaling modifies the dorsoventral dimension. This addition to the organizer is seen as a major event in chordate evolution, bringing body organization beyond that achieved by oocyte organization and meso-endoderm induction in other groups.  相似文献   

2.
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.  相似文献   

3.
Early coelomic development in the abbreviated development of the sea urchin Holopneustes purpurescens is described and then used in a comparison with coelomic development in chordate embryos to support homology between a single arm of the five-armed radial body plan of an echinoderm and the single bilateral axis of a chordate. The homology depends on a positional similarity between the origin of the hydrocoele in echinoderm development and the origin of the notochord in chordate development, and a positional similarity between the respective origins of the coelomic mesoderm and chordate mesoderm in echinoderm and chordate development. The hydrocoele is homologous with the notochord and the secondary podia are homologous with the somites. The homology between a single echinoderm arm and the chordate axis becomes clear when the aboral to oral growth from the archenteron in the echinoderm larva is turned anteriorly, more in line with the anterior–posterior axis of the early zygote. A dorsoventral axis inversion in chordates is not required in the proposed homology.  相似文献   

4.
Little is known about the molecular mechanisms responsible for axis establishment during non-embryonic processes such as regeneration and homeostasis. To address this issue, we set out to analyze the role of the canonical Wnt pathway in planarians, flatworms renowned for their extraordinary morphological plasticity. Canonical Wnt signalling is an evolutionarily conserved mechanism to confer polarity during embryonic development, specifying the anteroposterior (AP) axis in most bilaterians and the dorsoventral (DV) axis in early vertebrate embryos. beta-Catenin is a key element in this pathway, although it is a bifunctional protein that is also involved in cell-cell adhesion. Here, we report the characterization of two beta-catenin homologs from Schmidtea mediterranea (Smed-betacatenin1/2). Loss of function of Smed-betacatenin1, but not Smed-betacatenin2, in both regenerating and intact planarians, generates radial-like hypercephalized planarians in which the AP axis disappears but the DV axis remains unaffected, representing a unique example of a striking body symmetry transformation. The radial-like hypercephalized phenotype demonstrates the requirement for Smed-betacatenin1 in AP axis re-establishment and maintenance, and supports a conserved role for canonical Wnt signalling in AP axis specification, whereas the role of beta-catenin in DV axis establishment would be a vertebrate innovation. When considered alongside the protein domains present in each S. mediterranea beta-catenin and the results of functional assays in Xenopus embryos demonstrating nuclear accumulation and axis induction with Smed-betacatenin1, but not Smed-betacatenin2, these data suggest that S. mediterranea beta-catenins could be functionally specialized and that only Smed-betacatenin1 is involved in Wnt signalling.  相似文献   

5.
Models of vertebrate development frequently portray the organizer as acting on a largely unpatterned embryo to induce major components of the body plan, such as the neural plate and somites. Recent experiments examining the molecular and genetic basis of major inductive events of vertebrate embryogenesis force a re-examination of this view. These newer observations, along with a proposed revised fate map for the frog Xenopus laevis, suggest a possible reconciliation between the seemingly disparate mechanisms present in the ontogeny of the common chordate body plan of vertebrate and invertebrate chordates. Here, we review data from vertebrates and from an ascidian urochordate and propose that the organizer was not present at the base of the chordate lineage, but could have been a later innovation in the lineage leading to vertebrates, where its role was more permissive than instructive.  相似文献   

6.
Hemichordates, the phylum of bilateral animals closest to chordates, can illuminate the evolutionary origins of various chordate traits to determine whether these were already present in a shared ancestor (the deuterostome ancestor) or were evolved within the chordate line. We find that an anteroposterior map of gene expression domains, representing 42 genes of neural patterning, is closely similar in hemichordates and chordates, though it is restricted to the neural ectoderm in chordates whereas in hemichordates, which have a diffuse nervous system, it encircles the whole body. This map allows an accurate alignment of the anterioposterior axes of members of the two groups. We propose that this map dates back at least to the deuterostome ancestor. The map of dorsoventral expression domains, organized along a Bmp-Chordin developmental axis, is also similar in the two groups in terms of many gene expression domains and for the placement of the gill slits, heart, and post-anal tail. The two groups, however, differ in two major respects along this axis. The nervous system and epidermis are not segregated into distinct territories in hemichordates, as they are in chordates, and furthermore, the mouth is on the Chordin side in hemichordates but the Bmp side in chordates. The dorsoventral dimension has undergone extensive modification in the chordate line, including centralization of the nervous system, segregation of epidermis, derivation of the notochord, perhaps from the gut midline, and relocation of the mouth. Based on the shared domain maps, speculations can be made for the remodeling of the body axis in the chordate line.  相似文献   

7.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

8.
Hemichordates, the phylum of bilateral animals most closely related to chordates, could reveal the evolutionary origins of chordate traits such as the nerve cord, notochord, gill slits and tail. The anteroposterior maps of gene expression domains for 38 genes of chordate neural patterning are highly similar for hemichordates and chordates, even though hemichordates have a diffuse nerve-net. About 40% of the domains are not present in protostome maps. We propose that this map, the gill slits and the tail date to the deuterostome ancestor. The map of dorsoventral expression domains, centered on a Bmp-Chordin axis, differs between the two groups; hemichordates resemble protostomes more than they do chordates. The dorsoventral axis might have undergone extensive modification in the chordate line, including centralization of the nervous system, segregation of epidermis, derivation of the notochord, and an inversion of organization.  相似文献   

9.
One important question in evolutionary biology concerns the origin of vertebrates from invertebrates. The current consensus is that the proximate ancestor of vertebrates was an invertebrate chordate. Today, the invertebrate chordates comprise cephalochordates (amphioxus) and tunicates (each a subphylum in the phylum Chordata, which also includes the vertebrate subphylum). It was widely accepted that, within the chordates, tunicates represent the sister group of a clade of cephalochordates plus vertebrates. However, recent studies suggest that the evolutionary positions of tunicates and cephalochordates should be reversed, the implications of which are considered here. We also review the two major groups of invertebrate chordates and compare relative advantages (and disadvantages) of each as model systems for elucidating the origin of the vertebrates.  相似文献   

10.
11.
This symposium focused on the evolution of chordate genomes, in particular, those events that occurred before the appearance of jawed vertebrates. The aim was to highlight insights that have come from the genome sequences of jawless chordates (lampreys, tunicates, and amphioxus) not only into evolution of chordate genomes, but also into the evolution of the organism. To this end, we brought together researchers whose recent work on these organisms spans the gap from genomics to the evolution of body forms and functions as exemplified by endocrine systems and embryonic development.  相似文献   

12.
13.
The alignment of the left-right (LR) body axis relative to the anteroposterior (AP) and dorsoventral (DV) axes is central to the organization of the vertebrate body plan and is controlled by the node/organizer. Somitogenesis plays a key role in embryo morphogenesis as a principal component of AP elongation. How morphogenesis is coupled to axis specification is not well understood. We demonstrate that Wnt3a is required for LR asymmetry. Wnt3a activates the Delta/Notch pathway to regulate perinodal expression of the left determinant Nodal, while simultaneously controlling the segmentation clock and the molecular oscillations of the Wnt/beta-catenin and Notch pathways. We provide evidence that Wnt3a, expressed in the primitive streak and dorsal posterior node, acts as a long-range signaling molecule, directly regulating target gene expression throughout the node and presomitic mesoderm. Wnt3a may also modulate the symmetry-breaking activity of mechanosensory cilia in the node. Thus, Wnt3a links the segmentation clock and AP axis elongation with key left-determining events, suggesting that Wnt3a is an integral component of the trunk organizer.  相似文献   

14.
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.  相似文献   

15.
Development of many chordate features depends on retinoic acid (RA). Because the action of RA during development seems to be restricted to chordates, it had been previously proposed that the "invention" of RA genetic machinery, including RA-binding nuclear hormone receptors (Rars), and the RA-synthesizing and RA-degrading enzymes Aldh1a (Raldh) and Cyp26, respectively, was an important step for the origin of developmental mechanisms leading to the chordate body plan. We tested this hypothesis by conducting an exhaustive survey of the RA machinery in genomic databases for twelve deuterostomes. We reconstructed the evolution of these genes in deuterostomes and showed for the first time that RA genetic machinery--that is Aldh1a, Cyp26, and Rar orthologs--is present in nonchordate deuterostomes. This finding implies that RA genetic machinery was already present during early deuterostome evolution, and therefore, is not a chordate innovation. This new evolutionary viewpoint argues against the hypothesis that the acquisition of gene families underlying RA metabolism and signaling was a key event for the origin of chordates. We propose a new hypothesis in which lineage-specific duplication and loss of RA machinery genes could be related to the morphological radiation of deuterostomes.  相似文献   

16.
An early and crucial event in vertebrate inner ear development is the acquisition of axial identities that in turn dictate the positions of all subsequent inner ear components. Here, we focus on the role of the hindbrain in establishment of inner ear axes and show that axial specification occurs well after otic placode formation in chicken. Anteroposterior (AP) rotation of the hindbrain prior to specification of this axis does not affect the normal AP orientation and morphogenesis of the inner ear. By contrast, reversing the dorsoventral (DV) axis of the hindbrain results in changing the DV axial identity of the inner ear. Expression patterns of several ventrally expressed otic genes such as NeuroD, Lunatic fringe (Lfng) and Six1 are shifted dorsally, whereas the expression pattern of a normally dorsal-specific gene, Gbx2, is abolished. Removing the source of Sonic Hedgehog (SHH) by ablating the floor plate and/or notochord, or inhibiting SHH function using an antibody that blocks SHH bioactivity results in loss of ventral inner ear structures. Our results indicate that SHH, together with other signals from the hindbrain, are important for patterning the ventral axis of the inner ear. Taken together, our studies suggest that tissue(s) other than the hindbrain confer AP axial information whereas signals from the hindbrain are necessary and sufficient for the DV axial patterning of the inner ear.  相似文献   

17.
18.
Genes with the homeobox motif are crucial in developmental biology and widely implicated in the evolution of development. The Antennapedia (ANTP)-class is one of the two major classes of animal homeobox genes, and includes the Hox genes, renowned for their role in patterning the anterior-posterior axis of animals. The origin and evolution of the ANTP-class genes are a matter of some debate. A principal guiding hypothesis has been the existence of an ancient gene Mega-cluster deep in animal ancestry. This hypothesis was largely established from linkage data from chordates, and the Mega-cluster hypothesis remains to be seriously tested in protostomes. We have thus mapped ANTP-class homeobox genes to the chromosome level in a lophotrochozoan protostome. Our comparison of gene organization in Platynereis dumerilii and chordates indicates that the Mega-cluster, if it did exist, had already been broken up onto four chromosomes by the time of the protostome-deuterostome ancestor (PDA). These results not only elucidate an aspect of the genome organization of the PDA but also reveal high levels of macrosynteny between P. dumerilii and chordates. This implies a very low rate of interchromosomal genome rearrangement in the lineages leading to P. dumerilii and the chordate ancestor since the time of the PDA.  相似文献   

19.
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.  相似文献   

20.
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group “hemichordates.” Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord‐forming region in acorn worm juveniles is expressed in the club‐shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord. genesis 52:925–934, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号