首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple panning procedure that allows for the evaluation of interactions between various heparin-like molecules and basic FGF has been developed. This assay measures the ability of compounds to inhibit the interaction of transfected human lymphoblastoid cells, UC 729-6 (UC cells), expressing hamster syndecan and basic FGF-coated plastic plates. The transfected cells bind rapidly to basic FGF-coated plates while the control cells do not bind well. Binding of the transfected cells to basic FGF was inhibited by heparin and heparin sulfate (HS), but not by chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. There was little inhibition of binding by chemically modified heparin such as completely desulfated, N-acetylated heparin, completely desulfated, N-sulfated heparin, and N-desulfated, N-acetylated heparin. These results suggested that both the N-sulfate and O-sulfate groups of heparin are required for binding to basic FGF. In addition, inhibition by oligosaccharides derived from depolymerized heparin increased with fragment size; partial inhibition was observed with oligosaccharides as small as hexamers. The biochemical basis for the binding of transfected cells to basic FGF was established by showing a significant increase of 35SO4 incorporation into HS. In particular, the level of 35SO4-HS in the trypsin-releasable (cell surface) pool increased fivefold. This increase was accounted for by demonstration of the presence of HS on immunoprecipitated syndecan from the transfected cells.  相似文献   

2.
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1.  相似文献   

3.
Biosynthesis of heparan sulfate (HS) is strictly regulated to yield products with cell/tissue-specific composition. Interactions between HS and a variety of proteins, including growth factors and morphogens, are essential for embryonic development and for homeostasis in the adult. Fibroblast growth factors (FGFs) and their various receptors (FRs) form ternary complexes with HS, as required for receptor signaling. Libraries of HS-related, radiolabeled oligosaccharides were generated by chemo-enzymatic modification of heparin and tested for affinity to immobilized FR ectodomains in the presence of FGF1 or FGF2. Experiments were designed to enable assessment of N-sulfated 8- and 10-mers with defined numbers of iduronic acid 2-O-sulfate and glucosamine 6-O-sulfate groups. FGF1 and FGF2 were found to require similar oligosaccharides in complex formation with FR1c-3c, FGF2 affording somewhat more efficient oligosaccharide recruitment than FGF1. FR4, contrary to FR1c-3c, bound oligosaccharides at physiological ionic conditions even in the absence of FGFs, and this interaction was further promoted by FGF1 but not by FGF2. In all systems studied, the stability of FGF-oligosaccharide-FR complexes correlated with the overall level of saccharide O-sulfation rather than on the precise distribution of sulfate groups.  相似文献   

4.
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.  相似文献   

5.

Background

Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.

Methodology/Principal Findings

We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.

Conclusion/Significance

These results demonstrate structure-function relationships for synthetic HS saccharides that suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines.  相似文献   

6.
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.  相似文献   

7.
The structural properties of fibroblast heparan sulfate (HS) that are necessary for it to bind strongly to basic fibroblast growth factor (bFGF) have been investigated using bFGF affinity chromatography. Specific enzymic and chemical scission of HS, together with chemical N-desulfation, revealed that N-sulfate groups and iduronate-2-sulfates (IdoA(2-OSO3)) were essential for the interaction. bFGF-affinity chromatography of sulfated oligosaccharides released from HS by treatment with heparitinase led to the identification of an oligosaccharide component (oligo-H), seven disaccharides in length, with a similar affinity for bFGF as the parent molecule. Heparinase treatment of this fraction abolished the high affinity binding to bFGF. Analysis of oligo-H indicated that 74% of the disaccharide units had the structure IdoA(2-OSO3)alpha 1,4GlcNSO3; the remainder comprised N-acetylated and N-sulfated units, the majority of which were devoid of O-sulfate groups. Oligo-H was fully degraded to disaccharides by treatment with nitrous acid. These results indicate that the sequence of oligo-H is as shown below. delta GlcA beta 1,4GlcNSO3 alpha 1,4[IdoA(2-OSO3)alpha 1,4GlcNSO3]5 alpha 1, 4IdoA alpha 1,4GlcNAc Sulfated oligosaccharides of similar size but with a lower affinity for bFGF had a reduced concentration of IdoA(2-OSO3) but significant quantities of GlcNSO3(6-OSO3) and GlcNAc(6-OSO3). The data indicate a primary role for contiguous sequences of IdoA(2-OSO3)alpha 1,4GlcNSO3 in mediating the high affinity binding between fibroblast HS and bFGF.  相似文献   

8.
Elucidation of the molecular structure of heparan sulfate (HS) is the key to understanding its functional versatility as a co-receptor for growth factors and morphogens. We have identified and exploited the novel substrate specificity of the coliphage K5 lyase in studies of the domain organization of HS. We show that K5 lyase cleaves HS principally within non-sulfated sequences of four or more N-acetylated disaccharides. Uniquely, sections comprising alternating N-acetylated and N-sulfated units are resistant to the enzyme, as are the highly sulfated S domains. Spacing of the K5 lyase cleavage sites ( approximately 7-8 kDa) is similar to that of the S domains. On the basis of these findings, we propose a refined model of the structure of HS in which N-acetylated sequences of four to five disaccharide units (GlcNAc-GlcUA)(4-5) are positioned centrally between the S domains. The latter are embedded within N-acetylated and N-sulfated sequences, forming extended regions of hypervariable sulfation distributed at regular intervals along the polymer chain. K5 lyase provides a means of excision of these composite sulfated regions for structural and functional analyses.  相似文献   

9.
The sulfated glycosaminoglycan heparan sulfate (HS) is found ubiquitously on cell surfaces, in the extracellular matrix, and intracellularly as HS proteoglycans. Because of the structural heterogeneity of HS, tissue-derived HS preparations represent a mixture of HS chains originating from different cell types and tissue loci. Monoclonal anti-HS antibodies have been employed to detect the localization of specific HS epitopes in tissues, but limited information has been available on the saccharide structures recognized by the antibodies. We have studied the saccharide epitope structures of four anti-HS antibodies, HepSS1, JM13, JM403, and 10E4, which all recognize distinct HS species as demonstrated by different patterns of immunoreactivity upon staining of embryonic rat and adult human tissues. The epitopes recognized by JM13 and HepSS1 were found almost exclusively in basement membrane HS, whereas JM403 and 10E4 reacted also with cell-associated HS species. The binding of HepSS1, JM403, and 10E4 to HS was dependent on the GlcN N-substitution of the polysaccharide rather than O-sulfation. HepSS1 thus interacted with N-sulfated HS domains, JM403 binding was critically dependent on N-unsubstituted GlcN residues, and 10E4 bound to "mixed" HS domains containing both N-acetylated and N-sulfated disaccharide units. By contrast, JM13 binding seemed to require the presence of 2-O-sulfated glucuronic acid residues.  相似文献   

10.
A simple procedure using human basic fibroblast growth factor (FGF) was utilized for the selection of COS cell mutants with defects in the biosynthesis or expression of heparan sulfate proteoglycan (HSPG). Our approach was based on the strong binding affinity exhibited by COS cells to human basic FGF that had been adsorbed to plastic dishes. Cell binding to basic FGF could be inhibited by heparin and heparan sulfate (HS), but not by chondroitin sulfate, dermatan sulfate, keratan sulfate, or hyaluronic acid, suggesting that the cell binding involved an interaction between basic FGF and cell surface heparin-like molecules. COS cells were treated with ethyl methanesulfonate and four stable mutants were subsequently isolated that did not bind strongly to basic FGF adsorbed to plastic. These mutants cell lines (CM-2, CM-8, CM-9, and CM-15) exhibited significantly reduced 35SO4 incorporation into HS (40-70% depending on the cellular pool analyzed). In one of these cell lines, CM-15, the incorporation of [6-3H]glucosamine into HS was unaltered, suggesting that the extent of oligosaccharide polymerization was equivalent to that observed for the wild-type cells. Structural analysis revealed that N-sulfated glucosamine residues were present much less frequently in HS derived from these cells as compared with that derived from wild-type cells. Furthermore, CM-15 was found to be three-fold deficient in HS N-sulfotransferase activity, but contained wild-type levels of HS O-sulfotransferase activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide–protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.  相似文献   

12.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

13.
The snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups. Antibody MW3G3 also had a high preference for (modified) heparin oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. In tissues, antibody MW3G3 identified a HS oligosaccharide epitope containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues as enzymatic N-deacetylation of HS in situ prevented staining, and 2-O-sulfotransferase-deficient Chinese hamster ovary cells were not reactive. An immunohistochemical survey using various rat organs revealed a distinct distribution of the MW3G3 epitope, which was primarily present in the basal laminae of most (but not all) blood vessels and of some epithelia, including human skin. No staining was observed in the glycosaminoglycan-rich tumor matrix of metastatic melanoma. In conclusion, we have selected an antibody that identifies HS oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. This antibody may be instrumental in identifying structural alterations in HS in health and disease.  相似文献   

14.
Heparan sulfate (HS) proteoglycans play critical roles in a wide variety of biological processes such as growth factor signaling, cell adhesion, wound healing, and tumor metastasis. Functionally important interactions between HS and a variety of proteins depend on specific structural features within the HS chains. The fruit fly (Drosophila melanogaster) is frequently applied as a model organism to study HS function in development. Previous structural studies of Drosophila HS have been restricted to disaccharide composition, without regard to the arrangement of saccharide domains typically found in vertebrate HS. Here, we biochemically characterized Drosophila HS by selective depolymerization with nitrous acid. Analysis of the generated saccharide products revealed a novel HS design, involving a peripheral, extended, presumably single, N-sulfated domain linked to an N-acetylated sequence contiguous with the linkage to core protein. The N-sulfated domain may be envisaged as a heparin structure of unusually low O-sulfate content.  相似文献   

15.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

16.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

17.
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.  相似文献   

18.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

19.
Heparin and HS (heparan sulfate) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS binding to VEGF (vascular endothelial growth factor) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that the VEGF binding affinity likely depends on the specific structural features of these oligosaccharides, including their degree of sulfation, sugar-ring stereochemistry and conformation. Notably, the unique 3-O-sulfo group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue-specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs.  相似文献   

20.
Heparan sulfates (HSs) exert critical regulatory actions on many proteins, including growth factors, and are essential for normal development. Variations in their specific sulfation patterns are known to regulate binding and signaling of fibroblast growth factors (FGFs) via tyrosine kinase receptors (FGFRs). We previously reported differences in sulfation patterns between HS species expressed by embryonic day 10 (E10) and E12 mouse neural precursor cells. We have examined the abilities of the different HS species to support signaling of the relevant FGF-FGFR combinations expressed early during brain development. For FGF8, which only functions early (E8-E11), E10 HS showed preferential activation. The most potent signaling for FGF8 was via FGFR3c, for which E10 HS was strongly active and E12 HS had no activity. For FGF2, which functions from E10 to E13, HS from both stages showed similar activity and were more potent at activating FGFR1c than the other receptors. Thus, we find a stage-specific correlation with activation. To explore the potential mechanisms for the generation of these stage-specific HS species, we investigated the expression of the HS sulfotransferase (HSST) isozymes responsible for creating diverse sulfation motifs in HS chains. We find that there are stage-specific combinations of HSST isozymes that could underlie the synthesis of different HS species at E10 and E12. Collectively, these data lead us to propose a model in which differential expression of HSSTs results in the synthesis of variant HS species that form functional signaling complexes with FGFs and FGFRs and orchestrate proliferation and differentiation in the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号