首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short-term effects of infestation by cowpea aphids ( Aphis craccivora Koch) and pea aphids [ Acyrthosiphon pisum (Harris)], both Homoptera: Aphididae, on plant growth and respiration of excised, intact shoots of cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona], broad bean ( Vicia faba L. cv. Aquadulce) and garden pea ( Pisum sativum L. cv. Victory Freezer) seedlings were investigated, but not all plant-aphid combinations were utilized. Root, shoot and plant dry weights were significantly reduced within 10 days in the infested plants. Rates of total shoot respiration were significantly greater in infested plants within 10 days, and the increase was not due to increased alternative pathway activity but, rather, to increased cytochrome pathway activity. It is suggested that the aphid-induced increase in shoot respiration may be due to increased rates of photosynthesis, to substances injected into the phloem by the aphids and/or delayed senescence. These data indicate that aphid-infested shoots had a decreased carbon use efficiency.  相似文献   

2.
Net CO2 exchange rates and dark respiration rates were determined for single attached legume leaves (leaflets) after 6 to 9 days of aphid infestation. Plant-aphid combinations used were broad bean ( Vicia faba L. cv. Aquadulce) and cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona)] infested with cowpea aphids ( Aphis craccivora Koch) and broad bean and garden pea ( Pisum sativum L. cv. Victory Freezer) infested with pea aphids [ Acyrthosiphon pisum (Harris)]. Leaves from all aphid-infested plants had significantly greater net CO2 exchange rates in the light than their respective controls and rates of dark respiration of leaves from infested cowpea and garden pea were also significantly greater than those of controls. Dark respiration, as a percentage of net CO2 exchange rates in the light, was greater in aphid-infested than in control plants. When the mean net daily carbon gain was calculated for the leaves of each plant-aphid combination, leaves from aphid-infested plants had the greatest gain. It is proposed that net CO2, exchange rates increased due to increased sink demand and dark respiration rates increased to meet the increased energy requirements of phloem loading and cellular maintenance associated with aphid feeding. The apparent compensatory carbon gain of infested leaves was consumed by the aphids.  相似文献   

3.
Growth and efficiency of root respiration were investigated in Pisum sativum L. cv. Alaska and cv. Rondo. Plants were grown in culture solutions, either in symbiosis with Rhizobium leguminosanm , or with an abundant supply of nitrate or ammonium and completely lacking nodules. In comparison with plants utilizing nitrate or ammonium, Ni-fixing plants showed lower rates of dry matter and nitrogen accumulation, as well as lower rates of total and cytochrome-mediated root respiration. Rates of shoot dry matter accumulation and root respiration in plants utilizing ammonium were lower than in plants utilizing nitrate. The efficiency of root respiration was high in N2-fixing plants, as indicated by a low activity of the SHAM-sensitive, alternative, non-phosphorylating pathway. In nitrate and ammonium grown plants of cv. Alaska, the efficiency of root respiration was about the same, and in both cases lower than in N2-fixing plants. The efficiency of root respiration in non-symbiotically grown pea plants was generally higher than in many non-legumes. Comparison of the ATP costs of synthesis of root dry matter for different N-sources was complicated by large differences in relative growth rate of the root and in shoot to root ratio between N-treatments. A quantitative correction of the ATP production during synthesis of root dry matter for differences in shoot to root ratio and root maintenance respiration has been made. It is concluded that ATP costs of root dry matter production are highest in the case of N2-fixing plants. In plants utilizing ammonium, ATP costs of synthesis of root dry matter were slightly lower than in plants utilizing nitrate. The physiological significance of the alternative pathway in root metabolism is discussed in relation to the assimilation of different sources of nitrogen.  相似文献   

4.
Respiration of crop species under CO2 enrichment   总被引:10,自引:0,他引:10  
Respiratory characteristics of wheat (Triticum aestivum L. cvs Gabo and WW15), mung bean (Vigna radiata L. Wilczek cv. Celera) and sunflower (Helianthus annuus L. cv. Sunfola) were studied in plants grown under a normal CO2 concentration and in air containing an additional 340 (or 250) μl l?1 CO2. Such an increase in global atmospheric CO2 concentration has been forecast for about the middle of the next century. The aim was to measure the effect of high CO2 on respiration and its components. Polarographic and, with wheat, CO2 exchange techniques were used. The capacity of the alternative pathway of respiration in roots was determined polarographically in the presence of 0.1 mM KCN. The actual rate of alternative pathway respiration was assessed by reduction in oxygen consumption caused by 10 mM salicylhydroxamic acid. Each species responded differently. In wheat, growth in high atmospheric CO2 was associated with up to 45% reduction in respiration by both roots and whole plants. Use of respiratory inhibitors in polarographic measurements on wheat roots implicated reduction in the degree of engagement of the alternative pathway as a major contributor to this reduced respiratory activity of high-CO2 plants. No change was found in the total sugar content per unit wheat root dry weight as a result of high CO2. In none of the species was there an increase in the absolute, or relative, contribution by the alternative pathway to total respiration of the root systems. Thus the improved photosynthetic assimilate supply of plants grown in high CO2 did not lead to increased diversion of carbon through the non-phosphorylating alternative pathway of respiration in the root. On the contrary, in wheat grown in high CO2 the reduced loss of carbon through that route must have contributed to their larger dry weight.  相似文献   

5.
The influence of aphid, Aphis gossypii, feeding on photosynthesis and transpiration in cotton plants was investigated under greenhouse conditions. Four population densities of 0, 5, 10, and 25 aphids were used to infest individual cotton leaves. Gas exchange rates were determined for single attached cotton leaves after 9, 18, and 27 days of aphid infestation. Aphid feeding changed photosynthetic rates and transpiration rates. These changes were proportional to the number of aphids and the length of infestation period. Photosynthetic rates were significantly reduced in infested leaves with 25 aphids over 18 days, whereas significant reduction in photosynthetic rates was recorded within 27 days in infested leaves with 5, 10, and 25 aphids in comparison to their respective control. Initial population of 10 aphids increased significantly the transpiration rate of infested leaves over 9 and 27 days. Leaves of plants with 25 aphids had significantly greater transpiration rate than the control at all times.  相似文献   

6.
This study examined the effects of the surface wax bloom of pea plants, Pisum sativum, on infection of pea aphids, Acyrthosiphon pisum, by the fungal pathogen Pandora neoaphidis. In prior field surveys, a higher proportion of P. neoaphidis-killed pea aphids (cadavers) had been observed on a pea line with reduced wax bloom, as compared with a sister line with normal surface wax bloom. Laboratory bioassays were conducted in order to examine the mechanisms. After plants of each line infested with aphids were exposed to similar densities of conidia, the rate of accumulation of cadavers on the reduced wax line was significantly greater than on the normal wax bloom line; at the end of the experiment (13d), the proportion of aphid cadavers on the reduced wax line was approximately four times that on the normal wax bloom line. When plants were exposed to conidia first and then infested with aphids, the rate of accumulation of cadavers was slightly but significantly greater on the reduced wax line, and infection at the end of the experiment (16d) did not differ between the lines. When aphids were exposed first and then released onto the plants, no differences in the proportion of aphid cadavers were observed between the pea lines. Greater infection of pea aphid on reduced wax peas appears to depend upon plants being exposed to inoculum while aphids are settled in typical feeding positions on the plant. Additional experiments demonstrated increased adhesion and germination by P. neoaphidis conidia to leaf surfaces of the reduced wax line as compared with normal wax line, and this could help explain the higher infection rate by P. neoaphidis on the reduced wax line. In bioassays using surface waxes extracted from the two lines, there was no effect of wax source on germination of P. neoaphidis conidia.  相似文献   

7.
Impact of initial density of cowpea aphid Aphis craccivora Koch (Aphididae) at infestation on the growth and yield of aphid-susceptible cowpea cultivar ICV-1 and aphid-resistant cultivar ICV-12, was investigated. Plants at the seedling, flowering and podding stages of development were infested with five aphid densities consisting of 0, 2, 5, 10 and. 20 aphids per plant and maintained for 22 days. Extended leaf heights of plants and aphid counts were recorded at 7, 12, 17 and 22 days after infestation. Two crop growth parameters (biomass duration and leaf area duration), and two plant yield parameters (number of pods per plant and number of seeds per pod) were recorded. Due to the occurrence of parthenogenesis and changes in population dynamics during infestations, aphid densities were converted into cumulative cowpea aphid-days, to facilitate data analyses and interpretation. ANOVA indicated that there was significant (P=s 0.05) difference in aphid-day accumulations between the two cultivars when infested at the seedling stage. Accumulations on cv. ICV-1 were greater than on cv. ICV-12. However, no such differences between the cultivars were detected when plants were infested at flowering and podding stages. Therefore, the seedling stage was used for comparisons of the impact of cowpea aphid-days on the growth and yield parameters of the two cultivars. At the 95% confidence intervals, ICV-12 plants were consistently taller than ICV-1 plants. Infested ICV-1 seedlings showed stunting and other growth deformities which were not observed on ICV-12 plants. Regression analyses revealed substantial reductions in the growth and yield parameters of ICV-1 relative to ICV-12. Overall, cowpea aphid-days provided a convenient and reliable method for studying the aphid population dynamics and the subsequent impact on plant growth and yield performance.  相似文献   

8.
* Root respiration, stomatal conductance, leaf transpiration and photosynthetic rates were measured in phytotron and field-grown plants following the application of 5 or 10 nM lumichrome, 10 nM ABA (abscisic acid) and 10 ml of 0.2 OD600 infective rhizobial cells. * Providing soybean and cowpea roots with their respective homologous rhizobia and/or purified lumichrome increased the concentration of this molecule in xylem sap and leaf extracts. Relative to control, rhizobial inoculation and lumichrome application significantly increased root respiration in maize, decreased it in lupin, but had no effect on the other test species. * Applying either lumichrome (10 nM), infective rhizobial cells or ABA to roots of plants for 44 h in growth chambers altered leaf stomatal conductance and transpiration in cowpea, lupin, soybean, Bambara groundnut and maize, but not in pea or sorghum. Where stomatal conductance was increased by lumichrome application or rhizobial inoculation, it resulted in increased leaf transpiration relative to control plants. Treating roots of field plants of cowpea with this metabolite up to 63 d after planting showed decreased stomatal conductance, which affected CO2 intake and reduction by Rubisco. * The effect of rhizobial inoculation closely mirrored that of lumichrome application to roots, indicating that rhizobial effects on these physiological activities were most likely due to lumichrome released into the rhizosphere.  相似文献   

9.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

10.
Spinach and pea plants were grown in hydroponic culture with nitrate orammonium salts as the nitrogen source. Dry matter accumulation andphotosynthetic rate declined in spinach plants fed with ammonium salts, whereasthey did not change in pea plants compared with nitrate-fed plants. Measurementof organic nitrogen and free amino acid content showed that ammonium ions wereassimilated in shoots in spinach plants and in roots in pea plants. Ammoniumionnutrition led to a decline in starch content in both species. Organic acidsincreased in roots of pea plants fed with ammonium ions whereas they declinedinspinach plants. In both species ammonium ions increased root respiration ratebut the contribution of both routes (cytochromic and alternative pathway) tothis increase was different depending on the species. In spinach plants,ammonium ions increased the cytochromic path and decreased the alternativepathway, whereas in pea plants both routes were stimulated mainly through thealternative pathway. The differences in the sensitivity to ammonium ionsbetweenboth species are discussed in terms of differences in the availability of Cskeletons and energy, which could be due in part to differences in the capacityto stimulate the alternative pathway.  相似文献   

11.
Low phosphorus availability is often a primary constraint to plant productivity in native soils. Here we test the hypothesis that root carbon costs are a primary limitation to plant growth in low P soils by assessing the effect of P availability and mycorrhizal infection on whole plant C budgets in common bean ( Phaseolus vulgaris L.). Plants were grown in solid-phase-buffered silica sand providing a constant supply of low (1 μ m ) or moderate (10 μ m ) P. Carbon budgets were determined weekly during the vegetative growth phase. Mycorrhizal infection in low-P plants increased the root specific P absorption rate, but a concurrent increase in root respiration consumed the increased net C gain resulting from greater P uptake. The energy content of mycorrhizal and non-mycorrhizal roots was similar. We propose that the increase in root respiration in mycorrhizal roots was mainly due to increased maintenance and growth respiration of the fungal tissue. Plants grown with low P availability expended a significantly larger fraction of their total daily C budget on below-ground respiration at days 21, 28 and 35 after planting (29–40%) compared with plants grown with moderate P supply (18–25%). Relatively greater below-ground respiration in low P plants was mainly a result of their increased root:shoot ratio, although specific assimilation rate was reduced significantly at days 21 and 28 after planting. Specific root respiration was reduced over time by low P availability, by up to 40%. This reduction in specific root respiration was due to a reduction in ion uptake respiration and growth respiration, whereas maintenance respiration was increased in low-P plants. Our results support the hypothesis that root C costs are a primary limitation to plant growth in low-P soils.  相似文献   

12.
The contribution of the alternative pathway in root respiration of Pisum sativum L. cv Rondo, Plantago lanceolata L., and Plantago major L. ssp major was determined by titration with salicylhydroxamate (SHAM) in the absence and presence of cyanide. SHAM completely inhibited the cyanide-resistant component of root respiration at 5 to 10 millimolar with an apparent Ki of 600 micromolar. In contrast, SHAM enhanced pea root respiration by 30% at most, at concentrations below 15 millimolar. An unknown oxidase appeared to be responsible for this stimulation. Its maximum activity in the presence of low SHAM concentrations (1-5 millimolar) was 40% of control respiration rate in pea roots, since 25 millimolar SHAM resulted in 10% inhibition. In plantain roots, the maximum activity was found to be 15%. This hydroxamate-activated oxidase was distinct from the cytochrome path by its resistance to antimycin. The results of titrations with cyanide and antimycin indicated that high SHAM concentrations (up to 25 millimolar) block the hydroxamate-activated oxidase, but do not affect the cytochrome path and, therefore, are a reliable tool for estimating the activity of the alternative path in vivo. A considerable fraction of root respiration was mediated by the alternative path in plantain (45%) and pea (15%), in the latter because of the saturation of the cytochrome path.  相似文献   

13.
We studied cadmium effect on the respiratory pathways ratio in the organs of barley (Hordeum distichum L., cv. Novichok) plants grown in water culture at two temperature regimes. Mineral nutrients were supplied daily in exponentially increasing amounts in order to provide for steady-state growth. CdSO4 (30, 60, or 100 μmol/l) was added to nutrient solution at a single time in the beginning of the exponential growth period (19 days after germination). In further 6 days, the relative growth rate and biomass accumulation declined stronger with the increase in the cadmium concentration in plants grown at 13/8°C (day/night) than at 21/17°C (day/night). Cadmium suppressed root respiration (down to 60% of control) stronger than leaf respiration, and the roots manifested a higher sensitivity to the inhibitor of alternative oxidase, salicylhydroxamic acid. The respiratory pathways ratio in the roots occurred against the background of activated lipid peroxidation (POL). The highest POL activity and the highest proportion of alternative respiration pathway (AP) (up to 46% of total respiration) were observed in the roots in the presence of the highest cadmium concentration (100 μM) under lower temperature (13/8°C). Thus, high cadmium concentrations affected strongly the total rate of respiration and respiratory pathways ratio. Growth temperature modulated Cd effects on respiration. AP activation is one of the mechanisms for maintenance of root cell homeostasis under cadmium-induced stress.  相似文献   

14.
Nitrate (20 mM) applied to the root medium of 28-day-old nodulated pea plants (Pisum sativum L., cv. Jupiter) immediately retarded nodule growth and inhibited root nodulation. Acetylene-reducing and H2-evolving nitrogenase activities were also significantly inhibited. The inhibitory effect of nitrate on nodule respiration was less pronounced while the respiration of roots was increased after the addition of nitrate. The levels of cytosol glutamine synthetase and nitrate reductase in nodule cytosol were permanently decreased from the 4th day after nitrate application. These results indicate that the inhibitory effect of high nitrate concentration on whole nodule metabolism is nonspecific in nature.  相似文献   

15.
The effect of aluminium on respiration of wheat roots   总被引:1,自引:0,他引:1  
The effects of aluminium ions on respiration of excised root apices from wheat (Triticum aestivum L. cv. Vulcan) and on isolated mitochondria have been investigated. Addition of 75μ M aluminium to the growth medium of 4-day-old seedlings inhibited O2 uptake by excised root apices by 23 and 35% after 12 and 24 h, respectively. This decreased rate of respiration was initially caused by inhibition of the cytochrome pathway of mitochondrial electron transport. The cyanide-insensitive, alternative pathway was inhibited only after more prolonged exposure to aluminium. Mitochondria isolated from roots of aluminium-treated seedlings had reduced oxidative capacity with substrates that supply electrons to Complexes I and II, compared with mitochondria from roots of untreated control seedlings. The state 3 and state 4 rates of O2 uptake and the uncoupled rates with these substrates were also inhibited when aluminium was added directly to reaction mixtures containing mitochondria isolated from untreated plants. In contrast, when aluminium was added to reaction mixtures oxidizing exogenous NADH, state 4 O2 uptake was stimulated, whereas no effect was observed on the state 3 rate or the rate in the presence of uncoupler. The results suggest that aluminium initially affects electron flow through Complexes I and II, and that after more prolonged exposure, aluminium may also interact with other sites in mitochondria.  相似文献   

16.
Suboptimal root zone temperature (14°C) was imposed on chilling-sensitive cucumber (Cucumis sativus L.) and chilling-tolerant figleaf gourd (Cucurbita ficifolia Bouché) plants. Exposure of roots to low temperature for up to 10 days caused a strong growth inhibition in cucumber compared with figleaf gourd. Physiological analysis showed that generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion was significantly induced in cucumber plants as fast as 1 day after low root zone temperature treatment. In addition to the significant induction of antioxidant superoxide dismutase activity, low root zone temperature also increased the mitochondrial electron transport allocated to alternative pathway while decreased cytochrome pathway salicylhydroxamic acid-resistant respiration. However, these defense responses could not compensate for the ROS production, resulting in membrane lipid peroxidation and loss of root cell viability in the low root zone temperature treated cucumber roots. In contrast, 14°C root zone temperature had no significant effects on figleaf gourd plant growth, antioxidant enzymes, ROS levels and alternative respiratory pathway. Hence, difference in ROS metabolism would be associated with the remarkable difference in adaptability of cucumber and figleaf gourd plants in response to suboptimal root zone temperature condition.  相似文献   

17.
The role of arbuscular mycorrhiza in reducing Cd stress was investigated in three genotypes of Pisum sativum L. (cv. Frisson, VIR4788, VIR7128), grown in soil/sand pot cultures in the presence and absence of 2-3 mg kg(-1) bioavailable Cd, and inoculated or not with the arbuscular mycorrhizal fungus Glomus intraradices. Shoot, root and pod biomass were decreased by Cd in non-mycorrhizal plants. The presence of mycorrhiza attenuated the negative effect of Cd so that shoot biomass and activity of photosystem II, based on chlorophyll a fluorescence, were not significantly different between mycorrhizal plants growing in the presence or absence of the heavy metal (HM). Total P concentrations were not significantly different between mycorrhizal and non-mycorrhizal plants treated with Cd. From 20-50-fold more Cd accumulated in roots than in shoots of Cd-treated plants, and overall levels were comparable to other metal-accumulating plants. Genetic variability in Cd accumulation existed between the pea genotypes. Concentration of the HM was lowest in roots of VIR4788 and in pods of VIR4788 and VIR7128. G. intraradices inoculation decreased Cd accumulation in roots and pods of cv. Frisson, whilst high concentrations were maintained in roots and pods of mycorrhizal VIR7128. Shoot concentrations of Cd increased in mycorrhizal cv. Frisson and VIR4788. Sequestration of Cd in root cell walls and/or cytoplasm, measured by EDS/SEM, was comparable between non-mycorrhizal pea genotypes but considerably decreased in mycorrhizal cv. Frisson and VIR7128. Possible mechanisms for mycorrhiza buffering of Cd-induced stress in the pea genotypes are discussed.  相似文献   

18.
The growth and mineral nutrition responses were evaluated of three tropical legumes, cowpea (Vigna unguiculata L. cv Kuromame), pigeonpea [Cajanus cajan L. (Millsp.) cv ICPL 86009] and groundnut (Arachis hypogaea cv Nakateyutaka) inoculated with two different species of VAM fungi, Glomus sp. (Glomus etunicatum-like species) and Gigaspora margarita, and grown in Andosols with different fertilities [Bray II-P: topsoil (72 ppm), subsoil (<0.1 ppm)]. Percent fungal root colonization was high in cowpea and groundnut but relatively low in pigeonpea in both soil types. Despite the low rate of root infection, significant growth responses were produced, especially in the inoculated pigeonpea plant. In all legumes, shoot dry matter production was favoured by the inoculations. Increases in shoot biomass due to mycorrhizae were greater in the subsoil than in the topsoil. Mycorrhization raised shoot concentrations of P and Ca (in cowpea and groundnut) and P and K (in pigeonpea) in the topsoil. Whereas the P concentration in shoots in the subsoil was not positively affected by VAM fungi, particularly in cowpea and pigeonpea, the concentration of K in such plants was significantly increased by VAM treatment. The results also showed that mycorrhizal enhancement of shoot micronutrient concentrations was very rare in all plants, with negative effects observed in certain cases. Cu concentration, in particular, was not affected by VAM formation in any of the plants, and Mn and Fe in pigeonpea and groundnut, respectively, remained the same whether plants were mycorrhizal or not. In both soils the three legumes responded to Glomus sp. better than to Gigaspora margarita, and the effects of the VAM fungi on each of the crops relative to the controls were greater in the subsoil than in the topsoil. However, shoot growth of groundnut was not affected as much as cowpea and pigeonpea by the type of soil used. In spite of the relatively low infection of its root, pigeonpea was generally the most responsive of the three legume species in terms of mycorrhizal/nonmycorrhizal ratios.  相似文献   

19.
Recent studies have demonstrated that plants alter root growth and decrease competition with roots of the same individual (self); however, the physiological traits accompanying this response are still widely unknown. In this study, we investigated the effect of root identity on gas exchange in the model species pea (Pisum sativum L.). Split-root plants were planted so that each pot contained either two roots of the same plant (self) or of two different plants (non-self), and the responses of biomass, photosynthesis, and respiration were measured. The photosynthetic rate was not affected by the identity of the root neighbor. We found a reduction of leaf dark respiration by half, accompanied by an increase in nocturnal root respiration by 29 % in plants neighboring with non-self. The activity of the alternative oxidase (AOX) pathway increased when plants responded to non-self neighbors. The increased activity of AOX in plants responding to non-self indicates carbon imbalances in roots, possibly as a consequence of increased root exudation and communication between individuals. If such an effect occurs more widely, it may change the assumptions made for the quantity of respiration as used in carbon budget models.  相似文献   

20.
A binucleate Rhizoctonia (BNR) species was isolated from a clay loam soil on the Epoisses experimental station of INRA, Dijon and identified as belonging to the anastomosis Group A (AG-A). The BNR was inoculated to a Myc- Pisum sativum mutant (P53, sym30 locus) and its wild-type parent (cv Frisson) in the presence or absence of the arbuscular mycorrhizal fungus Glomus mosseae. The BNR had no significant effect on plant weight. Myc+ and Myc- roots were equally susceptible towards BNR and showed no localized cellular defense responses. The presence of BNR decreased significantly the percentage of root length colonized by G. mosseae and, inversely, G. mosseae reduced the number of BNR monilioid chains formed in root epidermal cells of the two pea genotypes. The pisatin concentration was increased significantly by BNR in both Myc+ and Myc- roots and by G. mosseae in the wild-type pea plants. The highest accumulation of pisatin was observed in Myc+ roots when both fungi were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号