首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus is a defective DNA virus, requiring the presence of a helper virus in order to replicate. In this paper we consider its origin in light of several observations, most notably the following: its own replication inhibits that of the helper virus; its DNA structure resembles that of transposable (moveable) elements; and extrachromosomal circles of DNA, about the size of adeno-associated virus DNA, have been found recently in eukaryotic cells. We have arrived at a hypothesis consisting of two main ideas: (1) that cells may use transposable DNA as a mechanism of defense against viral attack, and (2) that adeno-associated virus may have evolved directly from this cellular defense mechanism.  相似文献   

2.
To study the mechanism by which ultraviolet (UV) light inhibits DNA replication, we examined the effects of UV 254 nm irradiation on the replication of simian virus 40 (SV40) DNA and SV40-based plasmid in monkey cells. The study was designed to determine the relative contributions made by inhibition of replication initiation and chain elongation to the immediate inhibition of DNA replication following UV irradiation. We used two-dimensional neutral-alkaline electrophoresis to examine the behaviour of replication intermediates unambiguously. Kinetic analysis using this technique showed that initiation of replication started to decline at 15 min post-irradiation. When the pulse label incorporated in SV40 replication intermediates before irradiation was chased for 1 h, most of the label was found in mature Form I and II molecules. This indicated that replication elongation took place on damaged template. We also used a transfection technique to show that heavily irradiated plasmids replicated efficiently in unirradiated transfected cells. By the transfection technique, we observed that UV irradiation of host cells dose-dependently inhibited replication of transfected non-irradiated plasmids, suggesting that the inhibition of DNA replication is due to a global change in cellular physiology induced by UV. This change was also apparent from poor staining of the chromatin by fluorescent-DNA-binding dyes immediately after UV irradiation of intact cells. We conclude that a significant fraction of chain elongation proceeds on damaged templates and DNA replication during the acute response of cells irradiated with UV is mainly controlled by the inhibition of replication initiation.  相似文献   

3.
Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection.  相似文献   

4.
Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency.  相似文献   

5.
Interleukin-15 (IL-15) is a cytokine that possesses a variety of biological functions, including stimulation and maintenance of cellular immune responses. Recently, it has been demonstrated that Human Herpes virus type 6 (HHV-6) enhances NK activity of human PBMC by inducing IL-15. HHV-6 is a typical immunosuppressive agent, as suggested by its tropism for both CD4+ and CD8+ T cells, B cells, monocytes/macrophages, megakaryocytes and NK cells. Moreover, several studies have indicated that mononuclear phagocyte resistance to virus infection is influenced by the cellular differentiation state. This paper describes the effect of pretreatment "in vitro" with IL-15 on the resistance of human monocytes (HM) to HHV-6 infection. Our results demonstrate that undifferentiated HM were highly resistant to HHV-6 infection, whereas HM pretreated with human recombinant IL-15 showed an increased permissiveness for HHV-6 infection. This permissiveness was characterised by higher release of extracellular virus as well as an increased percentage of antigen positive cells. Moreover, we evaluated IL-15 production after the addition of HHV-6 to monocytes precultured in different experimental conditions. Our data indicate that HHV-6-induced IL-15 production by human monocytes is not affected by the condition of "in vitro" precultivation/differentiation. Furthermore, the neutralization of IL-15 induced by HHV-6 in differentiated monocytes did not affect viral replication. These findings suggest that IL-15 acts only on the mechanisms of cellular differentiation, rendering HM more susceptible to HHV-6 infection, without interfering with virus replication.  相似文献   

6.
Oxidative stress, primarily due to increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), is a feature of many viral infections. ROS and RNS modulate the permissiveness of cells to viral replication, regulate host inflammatory and immune responses, and cause oxidative damage to both host tissue and progeny virus. The lipid-rich nervous system is particularly susceptible to lipid peroxidation, an autocatalytic process that damages lipid-containing structures and yields reactive by-products, which can covalently modify and damage cellular macromolecules. Oxidative injury is a component of acute encephalitis caused by herpes simplex virus type 1 and reovirus, neurodegenerative disease caused by human immunodeficiency virus and murine leukemia virus, and subacute sclerosing panencephalitis caused by measles virus. The extent to which oxidative damage plays a beneficial role for the host by limiting viral replication is largely unknown. An enhanced understanding of the role of oxidative damage in viral infections of the nervous system may lead to therapeutic strategies to reduce tissue damage during viral infection without impeding the host antiviral response.  相似文献   

7.
In an in vitro simian virus 40 (SV40) DNA replication assay, we have observed excision of a hybrid adeno-associated virus (AAV)/SV40 insert from a plasmid construct. The excision was dependent on the presence of the palindromic AAV terminal repeat and greatly enhanced by the addition of the SV40 T antigen to the reaction. Analysis of the excision product supports a model in which the palindromic terminal sequences of AAV form a cruciform structure (equivalent to a Holliday recombination intermediate), which is cleaved and resealed so that the excision products are linear duplex pBR322 and linear duplex AAV/SV40 insert. Both the excised linear duplex pBR322 and the excised linear duplex AAV/SV40 insert have each terminus covalently crosslinked by one copy of the palindromic region of the AAV terminal repeat region folded on itself. The excision process may be a model system for cellular homologous recombination. The process as observed was either concomitant with or subsequent to DNA replication.  相似文献   

8.
We examined repair replication of HeLa cell deoxyribonucleic acid (DNA) in cells infected with mengovirus or Newcastle disease virus or treated with puromycin. Cellular DNA was damaged by ultraviolet light and then pulse-labeled with (3)H-thymidine. Autoradiographic analysis of non-S-phase DNA synthesis (repair replication) showed that there was no inhibition of this process at a time when overall cellular DNA synthesis was severely inhibited by either virus infection or puromycin treatment.  相似文献   

9.
D N Levy  Y Refaeli    D B Weiner 《Journal of virology》1995,69(2):1243-1252
The vpr gene product of human immunodeficiency virus (HIV) and simian immunodeficiency virus is a virion-associated regulatory protein that has been shown using vpr mutant viruses to increase virus replication, particularly in monocytes/macrophages. We have previously shown that vpr can directly inhibit cell proliferation and induce cell differentiation, events linked to the control of HIV replication, and also that the replication of a vpr mutant but not that of wild-type HIV type 1 (HIV-1) was compatible with cellular proliferation (D. N. Levy, L. S. Fernandes, W. V. Williams, and D. B. Weiner, Cell 72:541-550, 1993). Here we show that purified recombinant Vpr protein, in concentrations of < 100 pg/ml to 100 ng/ml, increases wild-type HIV-1 replication in newly infected transformed cell lines via a long-lasting increase in cellular permissiveness to HIV replication. The activity of extracellular Vpr protein could be completely inhibited by anti-Vpr antibodies. Extracellular Vpr also induced efficient HIV-1 replication in newly infected resting peripheral blood mononuclear cells. Extracellular Vpr transcomplemented a vpr mutant virus which was deficient in replication in promonocytic cells, restoring full replication competence. In addition, extracellular Vpr reactivated HIV-1 expression in five latently infected cell lines of T-cell, B-cell, and promonocytic origin which normally express very low levels of HIV RNA and protein, indicating an activation of translational or pretranslational events in the virus life cycle. Together, these results describe a novel pathway governing HIV replication and a potential target for the development of anti-HIV therapeutics.  相似文献   

10.
PLC/PRF/5 cells show limited permissiveness, meaning that almost all subclones are permissive; however, some subclones do not exhibit permissiveness for hepatitis E virus (HEV) infection. In this study, the single‐cell cloning of PLC/PRF/5 was performed and heterogeneous subclones characterized. Notably, the efficiency of intracellular virus replication did not correlate with the permissiveness for HEV infection. However, as well as binding permissive subclones, virus‐like particles bound non‐permissive subclones on various levels, suggesting that these subclones have some deficiencies in the attachment and entry steps of infection. Our data would be useful for investigating the HEV life cycle.  相似文献   

11.
Adeno-associated virus (AAV) normally requires co-infection of a helper virus to complete its life cycle. However, under conditions of cellular stress, such as treatment with carcinogens or ultraviolet (UV) light, a permissive intracellular environment is established and AAV completes its replicative cycle producing low levels of progeny virus. AAV DNA replication is dependent upon viral replication proteins, Rep78 and Rep68. The detailed mechanism by which these proteins interact with host cell factors is unknown. We have used a cell line (Neo6) that inducibly expresses the AAV Rep proteins to study their effects on cells that have undergone UV-induced DNA damage. Induction of Rep protein expression immediately after a sub-lethal dose of UV irradiation resulted in rapid cell killing. Those cells that die had chromatin condensation while cellular membranes remained intact, suggesting that concurrent Rep expression and UV damage induces an apoptosis-like response. However, we did not observe any DNA degradation. Thus we believe that the combination of Rep expression and UV irradiation induces cell death that shares some of the characteristics of apoptosis. UV irradiation and Rep expression induced an increase in the level of the CDK inhibitor, p21Cip, and the appearance of modified forms of both p21Cip and Bcl-2. Alteration of normal expression of these cytostatic/apoptotic proteins provides insight into the intracellular targets of the AAV replication proteins.  相似文献   

12.
A cooperative effect of 5-iodo-2'-deoxyuridine and mitomycin C which amplified (10- to 50-fold) their stimulating effect on simian virus 40 replication was obtained in infected Chinese hamster kidney cells. The results indicate that these drugs act at different levels to modify the permissiveness of cells to simian virus 40.  相似文献   

13.
Summary Simian virus 40 (SV40) was used to probe ultraviolet light (UV) — induced mutation in mammalian cells. Viral mutations were scored as reversions of early and late temperature-sensitive (ts) mutants to the wild-type (WT) phenotype. When virus was exposed to moderate or high UV doses, WT revertants were obtained at a frequency related to the square of the dose from two early (tsA) and one late (tsBC) mutant grown at the restrictive temperature. The reversions generated in the progeny of UV-irradiated early mutants presumably arose before the onset of viral DNA replication because, at the non-permissive temperature, tsA mutants are unable to express the functions responsible for the initiation of viral DNA synthesis. Moreover, the early mutant tsA209 underwent similar levels of induced reversion at the permissive and restrictive temperatures, suggesting that the pre-replicative mutational pathway might predominate for moderately and heavily irradiated virus, even under conditions where DNA synthesis can be initiated. The analysis of bursts from revertant plaques produced at the restrictive temperature was consistent with this interpretation. Although the mechanism of pre-replicative mutagenesis is not known, it is likely to be mediated by cellular activities owing to the low genetic complexity of the virus.  相似文献   

14.
Dengue type 2 virus infection in human peripheral blood monocyte cultures   总被引:2,自引:0,他引:2  
Dengue type 2 virus (D2V) infection in cultured human monocytes was studied. D2V permissiveness of the monocytes was enhanced when the cells were inoculated with D2V in the presence of either polyclonal or type-specific monoclonal anti-dengue antibody. The enhancement of D2V permissiveness mediated by the antibodies was more clearly demonstrated when the monocytes had been treated with trypsin before virus inoculation, though treatment of the cells with trypsin alone decreased D2V permissiveness. The enhancement of infection by type-specific neutralizing monoclonal antibody suggests that the D2V particles possess at least two antigenic determinants closely associated with virus infectivity. Infectious center assays revealed that the infection enhancement in the presence of the antibodies was due primarily to an increase in the number of D2V-infected cells, and that only a small proportion of the monocyte population supported D2V replication. The virus-permissive monocytes did not bear HLA-DR antigens on their cell surface. The presence of nonadherent lymphocytes in the monocyte cultures before D2V inoculation did not affect the D2V permissiveness of the monocytes. Treatment of cultured monocytes with the synthetic adjuvants N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) and its lipophilic derivative, [B30]-MDP, did not significantly affect the D2V permissiveness of the cells.  相似文献   

15.
The effect of herpes simplex virus type 2 (HSV-2) infection on the synthesis of DNA in human embryonic fibroblast cells was determined at temperatures permissive (37 C) and nonpermissive (42 C) for virus multiplication. During incubation of HSV-2 infected cultures at 42 C for 2 to 4 days or after shift-down from 42 to 37 C, incorporation of (3H)TdR into total DNA was increased 2-to 30-fold as compared with mock-infected cultures. Analysis of the (3H)DNA suggested that host cell DNA synthesis was induced by HSV-2 infection. Induction of host cell DNA synthesis by HSV-2 also occurred in cells arrested in DNA replication by low serum concentration. The three strains of HSV-2 tested were capable of stimulating cellular DNA synthesis. Virus inactivated by UV irradiation, heat, or neutral red dye and light did not induce cellular DNA synthesis, suggesting that an active viral genome is necessary for induction.  相似文献   

16.
The molecular mechanisms of in vivo inhibition of mammalian DNA replication by exposure to UV light (at 254 nm) was studied in monkey and human cells infected with simian virus 40. Analysis of viral DNA by electron microscopy and sucrose gradients confirmed that the presence of UV-induced lesions severely blocks DNA synthesis, and thus the conversion of replicative intermediates (RIs) into fully replicated form I DNA is inhibited by UV irradiation. These blocked RI molecules present several special features when visualized by electron microscopy. (i) In excision repair-proficient monkey and human cells they are composed of a double-stranded circular DNA with a double-stranded tail whose size corresponds to the average interpyrimidine dimer distance, as determined by the dimer-specific T4 endonuclease V. (ii) In excision repair-deficient human cells from patients with xeroderma pigmentosum, UV-irradiated RIs present a Cairns-like structure similar to that observed for replicating molecules obtained from unirradiated infected cells. (iii) Single-stranded gaps are visualized in the replicated portions of UV-irradiated RI molecules; such regions are detected and clearly distinguishable from double-stranded DNA when probed by a specific single-stranded DNA-binding protein such as the bacteriophage T4 gene 32 product. Consistent with the presence of gaps in UV-irradiated RI molecules, single-strand-specific S1 nuclease digestion causes a shift in their sedimentation properties when analyzed in neutral sucrose gradients compared with undamaged molecules. These results are in agreement with and reinforce the model in which UV lesions are a barrier to the replication fork movement when present in the template for the leading strand; when lesions are in the template for the lagging strand they inhibit synthesis or completion of Okazaki fragments, leaving gaps opposite the lesion. Moreover, cellular DNA repair-linked endonucleolytic activity may induce double-stranded breaks in the blocked region of the replication forks, resulting in the tailed structures observed in viral DNA molecules obtained from excision repair-proficient cell lines.  相似文献   

17.
Progress toward development of better therapies for the treatment of hepatitis C virus (HCV) infection has been hampered by poor understanding of HCV biology and the lack of biological assays suitable for drug screening. Here we describe a powerful HCV replication system that employs HCV replicons expressing the beta-lactamase reporter (bla replicons) and subpopulations of Huh7 cells that are more permissive (or "enhanced") to HCV replication than na?ve Huh7 cells. Enhanced cells represent a small fraction of permissive cells present among na?ve Huh7 cells that is enriched during selection with replicons expressing the neomycin phosphotransferase gene (neo replicons). The level of permissiveness of cell lines harboring neo replicons can vary greatly, and the enhanced phenotype is usually revealed upon removal of the neo replicon with inhibitors of HCV replication. Replicon removal is responsible for increased permissiveness, since this effect could be reproduced either with alpha interferon or with an HCV NS5B inhibitor. Moreover, adaptive mutations present in the replicon genome used during selection do not influence the permissiveness of the resulting enhanced-cell population, suggesting that the mechanisms governing the permissiveness of enhanced cells are independent from viral adaptation. Because the beta-lactamase reporter allows simultaneous quantitation of replicon-harboring cells and reporter activity, it was possible to investigate the relationship between genome replication activity and the frequency with which transfected genomes can establish persistent replication. Our study demonstrates that differences in the replication potential of the viral genome are manifested primarily in the frequency with which persistent replication is established but modestly affect the number of replicons observed per replicon-harboring cell. Replicon copy number was found to vary over a narrow range that may be defined by a minimal number required for persistent maintenance and a maximum that is limited by the availability of essential host factors.  相似文献   

18.
19.
20.
Primary human hepatocytes isolated from patient biopsies represent the most physiologically relevant cell culture model for hepatitis C virus (HCV) infection, but these primary cells are not readily accessible, display individual variability, and are largely refractory to genetic manipulation. Hepatocyte-like cells differentiated from pluripotent stem cells provide an attractive alternative as they not only overcome these shortcomings but can also provide an unlimited source of noncancer cells for both research and cell therapy. Despite its promise, the permissiveness to HCV infection of differentiated human hepatocyte-like cells (DHHs) has not been explored. Here we report a novel infection model based on DHHs derived from human embryonic (hESCs) and induced pluripotent stem cells (iPSCs). DHHs generated in chemically defined media under feeder-free conditions were subjected to infection by both HCV derived in cell culture (HCVcc) and patient-derived virus (HCVser). Pluripotent stem cells and definitive endoderm were not permissive for HCV infection whereas hepatic progenitor cells were persistently infected and secreted infectious particles into culture medium. Permissiveness to infection was correlated with induction of the liver-specific microRNA-122 and modulation of cellular factors that affect HCV replication. RNA interference directed toward essential cellular cofactors in stem cells resulted in HCV-resistant hepatocyte-like cells after differentiation. The ability to infect cultured cells directly with HCV patient serum, to study defined stages of viral permissiveness, and to produce genetically modified cells with desired phenotypes all have broad significance for host-pathogen interactions and cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号