首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the processing of insulin as an Ag for the presentation to MHC class II-restricted T cells revealed that the amino acid residues 1-14 of the insulin A chain are recognized by insulin-specific T cells. An A1-14 peptide containing three cys-residues that were protected by S-sulfonate groups still needed processing by APC for efficient presentation similar to native insulin. We suspected that reductive deblocking or opening of disulfide bonds that generates CysSH-residues may be an essential processing step for these Ag. Due to the instability of SH-groups it was not possible to test A chain peptides with free SH-groups in the usual way for processing-independent presentation by fixed APC. However, under acidic conditions (pH 5) during APC pulsing with the Ag we could demonstrate that the freshly reduced A1-14 fragment as well as reduced insulin are able to bind to Ia Ag and to stimulate appropriate T cells without further processing. Various substitutions of cys-residues by Ser within this peptide revealed that only CysA7 is critical for Ia binding and/or T cell recognition. In intact insulin, this residue links the A chain containing the T cell epitope to the B chain. Therefore, we propose that insulin processing is not dependent on proteolysis or on the generation of a conformational determinant but on the separation of A and B chains resulting in A chains whose cys-residues are converted into CysSH.  相似文献   

2.
To study the biochemistry of processing of a soluble protein Ag by an APC, we investigated how 125I-labeled human insulin (HI) is processed in situ by TA3 mouse hybridoma B cells. Fractionation of TA3 cells into their extracellular, plasma membrane-associated and intracellular compartments coupled with the use of HPLC enabled us to analyze several peptides derived from each compartment. One HI peptide found in all three compartments is composed of residues A1-A14 disulfide-linked to B7-B26 (A1-A14/B7-B26). The presence of this peptide in the extracellular compartment likely resulted from digestion of HI by an enzyme(s) released from the APC. Extracellular processing of radiolabeled HI was inhibited completely by unlabeled HI and N-ethylmaleimide, an inhibitor of a previously described insulin-specific protease, partially by lysozyme but not by BSA or OVA. This suggests that the enzyme involved in the extracellular processing of insulin is relatively insulin-specific and gives rise to the A1-A14/B7-B26 peptide. The processing of HI both at the plasma membrane and intracellularly was inhibited by chloroquine, monensin, and NH4Cl, suggesting that both intracellular pH changes and endocytic and exocytic events may be required for these compartments to process insulin. Kinetic analyses revealed that the processing of insulin into the A1-A14/B7-B26 peptide is first detected at the plasma membrane then intracellularly and finally in the extracellular compartment. This unlabeled A1-A14/B7-B26 peptide was purified from the extracellular compartment of TA3 APC by HPLC; when presented by TA3 APC this peptide effectively stimulated pork insulin (PI/I-Ad) specific Th cells to secrete IL-2. These data, taken together with the identification of another processed insulin peptide, A7-A11/B7-B26, have enabled us to elucidate the first steps in the biochemical pathway(s) of processing of insulin as an Ag in a B cell APC.  相似文献   

3.
Th cell recognition of globular proteins requires the uptake and intracellular processing of the native Ag by an APC to produce a peptide fragment containing the T cell antigenic determinant, which is recognized in conjunction with Ia. This report describes the time course of the processing and presentation of a soluble globular protein Ag, pigeon cytochrome c (Pc), and of the presentation of a C-terminal peptide fragment of Pc, residues 81 to 104 (Pc 81-104), which does not require processing. Splenic B cells, acting as APC, require 6 to 8 h incubation with native Pc to process and present it to an I-Ek-restricted Pc-specific T cell hybrid, resulting in the secretion of IL-2. Moreover, the time required for B cells to process Pc is the same whether the Ag is taken up by nonspecific fluid phase pinocytosis or by binding to surface Ig. Once processed, Ag is lost from the B cell surface by 8 to 12 h, although when provided with fresh Pc, the same B cells are still capable of processing and presenting. In contrast to native Pc, only 1 to 2 h are required for the peptide fragment Pc 81-104 to become associated with B cells in a stimulatory fashion, and this time is similar for live and paraformaldehyde-fixed B cells, which cannot internalize or process the peptide. Washed free of excess peptide after 2 h, B cells lose their ability to stimulate T cells by 8 to 12 h, with a time course indistinguishable from that for the loss of processed native Pc. Prolonged incubation of B cells with the peptide for 18 to 24 h results in a dramatic loss of the ability to present Pc 81-104. Even when provided with fresh Pc or Pc 81-104, these cells have diminished ability to present these Ag. This loss is selective, inasmuch as these B cells remain equivalent to untreated B cells in the presentation of an unrelated Ag, OVA, to an I-Ak-restricted specific T cell. However, the ability to present another I-Ek-restricted antigenic peptide of the D glycoprotein of HSV to its specific T cell is also diminished. Loss of activity is observed after incubation only with the peptide and not with the native protein and is not due to a depletion of the antigenic peptide from the incubation medium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Apamin, an 18 amino acid peptide with two disulfide bonds, elicits specific T cell proliferative responses in H-2d and H-2b mouse strains. We evaluated the processing requirement of this compact peptide by accessory cells for presentation to apamin-reactive T hybridoma cells (THC) by analyzing the IL-2 responses of 16 THC from apamin-primed BALB/c or C57BL/6 mice, to various forms of either native or chemically synthesized apamin analogs. These included: unfolded peptides (whose four sulfhydryl groups were blocked by acetamidomethyl residues), N-and/or C-truncated peptides, and an analog with a single amino acid substitution at position 10. Assessment of the Ag-specific THC responses in the presence of either live or formaldehyde-prefixed APC indicated the following: 1) all THC stringently required Ag processing; 2) in 8 of 16 cases, the simple unfolding of apamin was sufficient to eliminate the need for Ag processing, or even induced increased THC IL-2 responses (other cells required further antigenic alterations in addition to unfolding, or rare processing steps dependent on the integrity of the two disulfide bonds); and 3) for most THC, the Leu10 and the N terminus arm of apamin were shown to be critical for expression of the epitopes involved in T cell recognition. These data indicate that apamin, a natural peptide having an appropriate size for T cell triggering, acquires its antigenic conformation after a processing by APC which primarily involves an alteration of a disulfide bond-dependent peptide folding.  相似文献   

5.
The processing and presentation of insulin by B hybridoma cells to insulin A loop-specific T cell hybridomas was investigated. We found that the activation of these T cells requires insulin to be processed in a manner that permits unfolding of the molecule and prevents extensive proteolysis. An analysis of insulin peptides formed by either enzymatic digestion in vitro or solid phase synthesis revealed that a conformational determinant comprised of residues A1-A14 disulfide-linked to B7-B15 is most immunogenic to these T cells. Reduction and/or proteolysis of this peptide markedly decreases its immunogenicity. The pork insulin A1-A14/B7-B15 peptide differs only at residue A4 from its mouse insulin homolog. Thus, Glu A4 forms part of the antigenic site recognized by a pork insulin/I-Ad-specific mouse T cell. This insulin peptide can be induced to assume an alpha-helical configuration in a hydrophobic environment. In addition, virtually all of the residues of this peptide are identical with those predicted to be situated in amphipathic regions of the native insulin molecule. N-Ethylmaleimide and bacitracin, which inhibit the activity of two cytosolic enzymes that cleave insulin, enhance the antigen presentation of insulin. This suggests that these enzymes may participate in the nonlysosomal antigen processing of insulin by a B lymphocyte. A comparison of the relative avidity of several T cell hybridomas, which have the same apparent specificity for this insulin peptide, showed that an increase in their avidity was associated with a degeneracy in their fine specificity. Our data demonstrate that the efficiency of processing and presentation of a given antigenic determinant is related to the conformation of the determinant and the specificity and avidity of the T cell.  相似文献   

6.
Current models suggest that Ag undergoes proteolytic cleavage in APC and that resultant peptide fragments associate with class II histocompatibility glycoproteins before recognition by helper T cells. Little direct information is available concerning the physical structure and membrane association of Ag processed under physiologic conditions. A model system, employing a series of biotinylated insulin derivatives, was used to examine the domains of Ag that are presented by APC. We reasoned that avidin should block the response of T cells to a given derivative only if biotin is retained on the functionally relevant form of Ag after processing. By utilizing derivatives modified at selected sites one should be able to determine whether specific sites remain after processing. By using F1 APC pulsed with biotinyl-insulin derivatives modified through the free amino groups of the A1, B1, or B29 amino acids, and T cell hybridomas restricted to I-Ad or I-Ab, we found that avidin inhibited the I-Ad-restricted response to A1, but not B1 or B29 derivatives. By contrast, specific inhibition of the I-Ab-restricted response was observed by using all three derivatives. These results suggest that the processed form of insulin recognized in association with I-Ab is largely intact and includes residues from both chains (A1, B1, and B29). The differential inhibition observed by using T cells restricted to different class II alleles demonstrates that processed Ag associated with I-Ab differs in conformation or structure from that associated with I-Ad. This experimental approach should prove valuable in characterizing the actual structure of processed Ag recognized by T cells.  相似文献   

7.
The production of antibody to a thymus-dependent Ag requires cooperation between the B cell and an Ag-specific Th cell. MHC restriction of this interaction implies that the Th cell recognizes Ag on the B cell surface in the context of MHC molecules and that the Ag-specific B cell gets help by acting as an APC for the Th cell. However, a number of studies have suggested that normal resting B cells are ineffective as APC, implying that the B cell must leave the resting state before it can interact specifically with a Th cell. Other studies, including our own with rabbit globulin-specific mouse T cell lines and hybridomas, show that certain T cell lines can be efficiently stimulated by normal resting B cells. One possible explanation for the above contradiction is that our B cells have become activated before presentation. Here we show that presentation by size-selected small B cells is not the result of nonspecific activation signals generated by the T cells or components of the medium. Also, although LPS activation does increase the efficiency of presentation by small B cells, use of large cells in place of small cells or preincubation of resting B cells with mitogenic doses of anti-Ig does not. Another possibility that we considered was that small B cells are unable to process Ag and that we had selected T cell lines that were capable of recognizing native Ag on the B cell surface. In the majority of cases, experiments with B cell lines and macrophages have shown that Ag presentation requires Ag processing, a sequence of events that includes internalization of Ag into an acid compartment, denaturation or digestion of Ag into fragments, and its return to the cell surface in the context of class II MHC molecules. The experiments reported here show that our T cell lines require an Ag processing step and that small resting B cells, like other APC, process Ag before presenting it to T cells. Specifically, we show that an incubation of 2 to 4 h is required after the Ag pulse before Ag presentation becomes resistant to irradiation. Shortly after the pulse, the Ag enters a pronase-resistant compartment. Although efficient Ag presentation requires initial binding to membrane Ig, Ag is no longer associated with membrane Ig at the time of presentation and is not presented in its intact form, because removal of membrane Ig by goat anti-Ig blocks presentation before but not after the Ag pulse.  相似文献   

8.
Ten acetylcholine receptor (AChR)-specific T cell clones from Lewis rats were studied. These clones had various AChR subunit and peptide specificities, and proliferated in response to antigen on appropriate APC. All the T cell clones were CD4+CD8- and OX22-, helped anti-AChR antibody production by AChR-primed lymph node B cells, and could secrete IL-2. However, several lines of evidence suggested that IL-2 was not the lymphokine that mediated T cell help. B cells primed with native AChR and then exposed in culture to very low concentrations of native AChR effectively presented the Ag to the T cell lines, presumably due to uptake via Ag receptors, but primed B cells were no more effective than were non-specific APC at presenting a synthetic AChR peptide which is recognized by AChR-specific T cells but not by AChR-specific B cells. Increasing AChR doses produced an antibody production response that was bell shaped and low doses stimulated, whereas higher AChR concentrations suppressed the antibody production response. Evidence suggested that AChR exerted its inhibitory effect through the T cells, but not via IL-2.  相似文献   

9.
It is generally accepted that a limited number of T cell epitopes are generated by APC from an immunogenic protein. To ascertain the number of determinants on OVA recognized in the context of the H-2s haplotype, we generated 19 T-T hybridomas against OVA and H-2s and we synthesized 46 overlapping peptides spanning the entire protein. Eighteen T-T hybrids were stimulated by eight different peptides. The peptide recognized by one T cell hybrid was not identified. The effect of four protease inhibitors on the processing and presentation of OVA by the LS.102.9 B cell hybridoma seemed to implicate several groups of proteases in the processing of this Ag. Alkylation of cysteine residues with iodoacetic acid showed in a few cases a dramatic decrease in the capacity of OVA to stimulate T-T hybrids recognizing cysteine-free peptides. In contrast, two T-T hybrids recognizing cysteine containing peptides were not affected by the alkylation, suggesting that alkylation inhibited the processing of OVA without affecting peptide interaction with class II MHC molecules. These data demonstrate that the repertoire of peptides generated by APC from OVA is not limited to one or few immunodominant peptides, and results from the activity of several endopeptidases and/or exopeptidases. In addition, the structure of the Ag (native or denatured) was shown to affect the efficiency with which different epitopes are generated.  相似文献   

10.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

11.
Kinetics of MHC-antigen complex formation on antigen-presenting cells   总被引:4,自引:0,他引:4  
With the use of flow cytometry, we recorded changes in intracellular ionized calcium [Ca2+]i of Indo-1 loaded T cells that were triggered by contact with APC. This rapid readout of TCR perturbation enabled us to monitor the formation of stimulatory Ag-MHC complexes on EBV-transformed B cells that were either pulsed with native tetanus toxoid (TT) or with a 12-amino-acid fragment of this protein. Neither unpulsed APC nor Ag-specific APC that were pulsed with native Ag and kept at +4 degrees C were able to induce changes in basal T cell [Ca2+]i in TT-specific T cell clones. After 1 h at 37 degrees C, however, the Ag-pulsed APC were able to induce a three-to-fourfold increase in [Ca2+]i. This length of time appeared to be almost independent of the concentration of Ag with which the APC were pulsed, suggesting that the lag time was due more to intracellular transit than to association of the processed Ag with the MHC molecule. Furthermore, the same lag time and independence of Ag concentration were found when the EBV-transformed B cells were pulsed with a mouse-anti-transferrin receptor mAb and tested for their capacity to trigger a T cell clone specific for processed mouse Ig. This indicates that, in addition to surface Ig, other receptors that are internalized can function in the same fashion in the uptake and processing of a soluble Ag. In contrast to what was found with intact native Ag, no lag time was observed when the APC were pulsed with high concentrations of a 12-amino-acid peptide, containing the amino acid sequence recognized by a TT-specific T cell clone, suggesting that the formation of MHC-peptide complexes occurs instantly. Pulsing with a lower peptide concentration, however, caused the appearance of a time-dependent increase in efficacy of Ag presentation, suggesting a slow accumulation of MHC-peptide complexes on the B cell membrane.  相似文献   

12.
T cell autoreactivity to insulin in type I diabetic and related non-diabetic individuals was analyzed. Peripheral T lymphocytes from both insulin-treated diabetic and untreated non-diabetic members of four families were found to proliferate in vitro in response to human insulin. T cell autoreactivity to insulin therefore does not appear to be diagnostic of the onset of type I diabetes. Highest T cell responses to human insulin were usually detected in insulin-dependent type I diabetes patients treated with a mixture of beef and pork insulin than with self insulin, the greater the dose of animal insulin the higher the T cell response. The T cell repertoires for self insulin appear to be similar in diabetics and non-diabetics based on their patterns of T cell reactivity to beef insulin, port insulin, human insulin, and various peptide of human insulin. The autoreactive T cells analyzed recognize two conformational epitopes of human insulin formed by interactions between A chain and B chain residues. One epitope is associated with the A chain loop and is present in the A1-A14/B1-B16 peptide, and the other epitope consists mainly of B chain residues located in the A16-A21/B10-B25 peptide. These two epitopes are present in amphipathic alpha-helical regions of insulin. HLA-DR (DR3, DR4, and DR5) and HLA-DQ (DQw2/DQw3) Ag can restrict these T cell responses to human insulin epitopes. The ability to detect insulin-specific autoreactive T cells in healthy non-diabetic individuals supports the hypothesis that autoreactive lymphocytes do not necessarily elicit autoimmune disease if present in an environment in which their activity is immunoregulated.  相似文献   

13.
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.  相似文献   

14.
Human T cell clones present antigen   总被引:1,自引:0,他引:1  
Two human T cells clones are described which react with influenza virus hemagglutinin type H3 and synthetic peptides of H3 when presented by PBMC APC. Both T cell clones also responded to peptide Ag in the absence of additional APC suggesting that T cells can simultaneously present and respond to Ag. T cell clones could only present peptide Ag and not an appropriate strain of inactivated whole influenza virus thus indicating an inability to process Ag conventionally. Peptide presentation by T cells was dose dependent, restricted by MHC class II Ag and was dependent on the number of Ag presenting T cells per culture. Experiments with nested peptides showed that the same epitope was recognized in the presence and absence of PBMC APC. No Ag or IL-2 from the propagation procedure was carried over into assays and two-color fluorescence-activated cell sorter analysis of each clone detected no contaminating cells with the phenotype of monocytes, macrophages or B cells; in each T cell clone, all cells expressing MHC class II Ag co-expressed CD3. These date therefore provide strong evidence that human T cell clones can simultaneously present and respond to appropriate forms of Ag.  相似文献   

15.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

16.
Human T cell clones specific for epitopes 830-843 and 947-967 of tetanus toxin can be differentially activated in vitro when APC (PBL or LCL) from different donors are pulsed with tetanus toxin. Although PBL tested do not seem to exhibit substantial differences in the number of precursor T cells specific for these epitopes, APC from the same donors activate clone KT-2 specific for peptide 830-843 but not clone KT-30 specific for peptide 947-967. These APC express the proper restriction element because they can present the corresponding synthetic peptides. The failure to present a particular epitope might, however, be explained by the absence or presence of a protease(s) required for Ag presentation that may vary for different epitopes. Indeed, the protease inhibitor leupeptin was found to inhibit activation of KT-2 but not KT-30 T cell clone by the KK.35 B cell line normally capable of presenting either epitope. In summary, these data suggest that tetanus toxin processing and epitope formation by APC is distinct in different donors and for different epitopes.  相似文献   

17.
A major objective in vaccine development is the design of reagents that give strong, specific T cell responses. We have constructed a series of rAb with specificity for MHC class II (I-E). Each has one of four different class II-restricted T cell epitopes genetically introduced into the first C domain of the H chain. These four epitopes are: 91-101 lambda2(315), which is presented by I-E(d); 110-120 hemagglutinin (I-E(d)); 323-339 OVA (I-A(d)); and 46-61 hen egg lysozyme (I-A(k)). We denote such APC-specific, epitope-containing Ab "Troybodies." When mixed with APC, all four class II-specific Troybodies were approximately 1,000 times more efficient at inducing specific T cell activation in vitro compared with nontargeting peptide Ab. Furthermore, they were 1,000-10,000 times more efficient than synthetic peptide or native protein. Conventional intracellular processing of the Troybodies was required to load the epitopes onto MHC class II. Different types of professional APC, such as purified B cells, dendritic cells, and macrophages, were equally efficient at processing and presenting the Troybodies. In vivo, class II-specific Troybodies were at least 100 times more efficient at targeting APC and activating TCR-transgenic T cells than were the nontargeting peptide Ab. Furthermore, they were 100-100,000 times more efficient than synthetic peptide or native protein. The study shows that class II-specific Troybodies can deliver a variety of T cell epitopes to professional APC for efficient presentation, in vitro as well as in vivo. Thus, Troybodies may be useful as tools in vaccine development.  相似文献   

18.
Plasmodium berghei sporozoite (SPZ)-immune lymph node (LN) cells obtained from mice of different H-2 haplotypes were analyzed for the presence of circumsporozoite (CS) protein-reactive T cells in proliferative assays. Although lymphocytes from each strain responded in vitro to the priming Ag and to the soluble rCS protein, they did not respond to CS protein synthetic peptides. Parallel analysis of rCS protein-primed LN cells revealed that the two Ag are unequal in generating T cell specificities: although SPZ priming did not induce CS protein peptide-reactive T cells, priming with rCS protein did. Not being privy to the processing and presentation of SPZ Ag, we postulated that a different order of processing of the authentic, i.e., SPZ-associated CS protein vs soluble rCS protein might be responsible for the generation of different T cell specificities. Accordingly, authentic CS protein might not be processed by APC, or the processed fragments might obscure the recognition of smaller peptide fragments. Therefore, we subjected the SPZ to three cycles of a freeze/thaw procedure and used the denatured SPZ preparation for priming. We observed that contrary to priming with the authentic SPZ, denatured SPZ generated T cells reactive to some of the CS protein synthetic peptides. The hypothesis that each form of the SPZ Ag is subject to a unique Ag processing was also confirmed in experiments demonstrating a lack of recognition of the authentic CS protein by rCS protein-primed LN cells. Hence, the evidence presented in this work that complex protozoan Ag, such as Plasmodia, might present different requirements for Ag-specific T cell induction/activation not only enhances the basic understanding of the immune system, but is essential for the development of antimalaria vaccine(s). In addition, these observations support the hypothesis that the molecular context of the priming Ag influences the outcome of T cell specificities, by providing evidence that the authentic CS protein induces a T cell repertoire that is distinct from that induced by the rCS protein.  相似文献   

19.
Peptide-based vaccines that directly target T cell or B cell epitopes may have significant advantages over conventional vaccines. Further, synthetic chimeric peptides that combine strong T cell epitopes with poorly immunogenic, but immunodominant, B cell epitopes or strain-conserved B cell epitopes may be useful in eliciting antibody to such important regions. Here we characterize a human T cell epitope analyzed in 54 individuals immunized with a hepatitis B virus surface Ag vaccine. Primary cultures from a total of 59 immunized donors were assessed for their ability to respond to hepatitis B virus surface Ag and peptides, and five were non-responders (8.5%). T cell lines were established from the remaining 54 responders. Of the responders, it was found that the peptide representing amino acids 19 through 33 (19-33) elicited significant proliferation in lines derived from 50 donors. This "universal" T cell epitope, which was recognized in donors of many different HLA-DR and -DQ haplotypes, was then used to construct a chimeric peptide containing 19-33 and the third V region loop structure (V3 loop) of HIV-1 envelope gp 120, in an attempt to augment the immune response to the V3 loop peptide. The V3 loop is the region to which significant neutralizing antibody is directed. Thus, a strong immune response to a synthetic peptide that contains the strain-conserved V3 loop region could have significant therapeutic implications. The V3 loop/19-33 peptide was then used to prime mice, to determine whether V3 loop-specific antibody could be induced. The peptide elicited potent 19-33-specific proliferation in T cells isolated from draining lymph nodes, and in six of six mice anti-V3 loop antibody was elicited. Further, V3 loop/19-33-primed animals made significant levels of antibody that bound rgp120. These data suggest that, when a major T cell epitope is synthesized in tandem with the V3 loop, a significant immune response against the loop can be elicited. Thus, given the finding that neutralizing antibody may play a role in the control and/or prevention of HIV infection, an HIV vaccine composed of a T cell epitope-containing peptide may prove effective. In addition, this type of approach can be generalized to the design of peptide-based vaccines.  相似文献   

20.
Previous studies have shown that glutaraldehyde-fixed cells can present fragmented, but not native, Ag to class II-restricted T cells. This presumably occurs via direct binding of peptides to class II molecules at the cell surface. More recently, it has been shown that viable target cells can present peptides and endogenous, but not exogenous, protein Ag in association with class I MHC molecules to CTL. We have derived CTL specific for a chicken OVA peptide (OVA258-276) recognized in association with H-2Kb. These CTL recognize target cells that endogenously synthesize OVA and cells "loaded" with native OVA but fail to recognize target cells in the presence of exogenous native OVA. Thus, OVA must be intracellularly located to be processed and presented for CTL recognition. It remains unclear, however, whether exogenous peptides require internalization and further processing by target cells or are able to associate directly with class I molecules at the cell surface for CTL recognition. We provide evidence that glutaraldehyde-fixed cells can present synthetic peptides to H-2Kb- and H-2Db-restricted CTL and that such presentation does not require internalization or processing. The peptides used range in size from 16 to 48 amino acids in length. In contrast, glutaraldehyde-fixed cells are incapable of presenting Ag to CTL specific for influenza nucleoprotein and OVA if the cells are fixed within 1 h of viral influenza infection or loading with OVA. Thus, CTL recognition of antigenic peptides appears to occur via direct binding of peptides to class I molecules at the cell surface and does not require any intracellular processing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号