首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six-months-old, uniform sized seedlings of two citrus rootstocks; Cleopatra mandarin (Citrus reshni Hort. ex Tan) and Troyer citrange (Poncirus trifoliata × Citrus sinensis) were irrigated with half-strength Hoagland nutrient solution containing 0, 40 or 80 mM NaCl for 12 weeks. Shoot height, leaf number and fresh weights of the seedlings, and relative chlorophyll contents, chlorophyll fluorescence yields (Fv/Fm), net photosynthetic and respiration rates in the leaves decreased with the increase in salinity level in the irrigation water. The decrease was greater in Troyer citrange as compared to Cleopatra mandarin. The concentrations of sugars i.e. fructose, glucose and sucrose in the leaves of Cleopatra mandarin and both leaves and roots of Troyer citrange decreased with the increase in salinity level. However, the concentrations in the roots of Cleopatra mandarin increased with the increase in salinity level. Free proline content in the leaves of Troyer citrange and root tissue of Cleopatra mandarin also increased with the increased salinity level. Among the polyamines, spermine titer increased in the leaves of both rootstocks as a response to salinity treatments. Na+ concentrations were higher in leaf and root tissue of Cleopatra mandarin, while that of Cl were higher in Troyer citrange.  相似文献   

2.
Effects of Salinity on Some Citrus Scion-Rootstock Combinations   总被引:3,自引:0,他引:3  
Chloride and sodium concentrations, water relations and gasexchange parameters were measured on leaves of Clementine (CitrusClementine Hort. ex. Tan) and Navel orange [C. sinensis (L.)Osb] scions grafted on Cleopatra mandarin (C. reticulata Blanco)and Troyer citrange (C. sinensis x Poncirus trifoliata) rootstocksgrown at increasing levels of NaCl in the external medium. Otherparameters affected by salinity such as growth and defoliationwere also recorded. Scions on Cleopatra mandarin accumulated less Cl- in their leavesthan did scions on Troyer citrange. Also, leaf Cl- levels inClementine scions were lower than in Navel orange when bothwere grafted on the same rootstock. However, sodium concentrationwas lower in scions on Troyer citrange than in Cleopatra mandarin. Leaf water potential, stomatal conductance, photosynthesis andgrowth were reduced more in grafted plants of salt-treated Navelorange than those of salt-treated Clementine. However, choiceof rootstock had little effect on salt-induced changes in theseparameters. For each scion, reduction in leaf stomatal conductancewas closely correlated with decrease in leaf water potential.Also, a significant correlation between photosynthesis and stomatalconductance was found. The results indicate that reductions in gas exchange parametersand growth at increasing salinity levels depended more on thescion type than on Cl- or Na+ concentration in leaves. Otherwise,leaf injury and defoliation were closely correlated with leafCl- concentration.Copyright 1995, 1999 Academic Press Citrus, photosynthesis, salinity, water relations  相似文献   

3.
The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of –0.10, –0.20, and –0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the –0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.Florida Agricultural Experiment Station Journal Series No. R-02276.  相似文献   

4.
In this work, reciprocal grafts between the chloride-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the chloride-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. × Poncirus trifoliata [L.] Raf.) rootstocks were grown under saline conditions to identify major transmissible salt tolerance traits in citrus. The data indicate that lower chloride levels in leaves, attenuated shoot growth and smaller vessel size in xylem were the most important transmissible salt tolerance traits. Other tolerance attributes such as larger leaf area and lower transpiration rates were non-transmissible charac teristics. Leaf cation levels and gas interchange parameters were unrelated to salt tolerance. In com parison with sensitive Carrizo, tolerant Cleopatra plants showed reduced capabilities for water uptake as well as lower leaf Cl-concentrations. Carrizo on Cleopatra grafts also possessed these two attributes although they were slightly less tolerant than Cleopatra plants, which had higher shoot to root ratios than the grafted plants. Cleopatra on Carrizo plants showed high sensitivity to salt because they had higher ability for water uptake and accumulated higher Cl-concentrations in leaves.  相似文献   

5.
Tetraploid citrus rootstocks are more tolerant to salt stress than diploid   总被引:2,自引:0,他引:2  
Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid. To cite this article: B. Saleh et al., C. R. Biologies 331 (2008).  相似文献   

6.
Leaf gas exchange, water relations and ion content were measured on two-year-old Valencia orange (Citrus sinensis [L.] Osbeck), Washington Navel orange (C. sinensis) and Marsh grapefruit (C. parodisi Macfad) scions budded to either Trifoliata (Poncirus infoliata [L] Raf) or Cleopatra mandarin (C. reticuLua Blanco) rootstoeks. Trees were watered with dülute nutrient solution containing either 0 or 50 mM NaCl for 77 days. Leaf chloride concentrations (cell sap basis) were higher in all scions budded on “Trifoliata but sodium levels were lower than in equivalent foliage budded on Cleopatra mandarin rootstock. Foliar salt levels also varied according to scion. Leaves of Marsh grapefruit had higher levels of both sodium and chloride than leaves of either Valencia orange or Washington Navel orange on both rootstocks. Accumulation of sodium and chloride in salinised leaves caused a reduction in leaf osmotic potential of 0.2–1.4 MPa. and leaf water potential declined by as much as 0.5 MPa. Turgor pressure in salinised leaves was thus maintained at or above the control level. Osmotic potentials determined by psychrometry compared with pressure-volume curves were taken to imply that some accumulation of sodium or chloride in the apoplast of salinised leaves may have occurred. Despite turgor maintenance both co2 assimilation and stomatal conductance were reduced by salinity. Following onset of leaf response to salinisation, gas exchange was impaired to a greater extent in scions budded to Cleopatra mandarin compared to those on Trifoliata. Amongst those scions. leaves of salt-treated Marsh grapefruit showed greater reductions in gas exchange than Valencia orange or Washington Navel orange budded on either rootstock. Increased sensitivity of 1Marsh grapefruit was correlated with a higher foliar sodium and chloride content in this scion. Scion differences in sensitivity of leaf gas exchange to solute concentration were independent of rootstock and appeared unrelated to leaf prolinebetaine concentrations. This implies an inherent difference between scion species with respect to salt tolerance, rather than variation in their capacity to acquire that type of compatible solute. In terms of rootstock effects, all scions proved more sensitive to salinity when budded to Cleopatra mandarin compared with Trifoliata. That response was attributed to a disproportionately higher concentration of leaf sodium in scions on Cleopatra mandarin.  相似文献   

7.

Salinity restricts plant growth and production by specific ions toxicity to particular plants. Cl ion is exceptionally toxic to citrus. Citrus rootstock and scion has a significant effect on each other under unfavourable conditions. Nevertheless, their specific response can be different depending on the way to translocate and compartment the toxic ions, or to induce antioxidant systems. In this paper, we studied the behaviour of diploid (2x) and tetraploid (4x) Volkamer lemon rootstocks grafted with commercial cultivar Kinnow mandarin (KM/VM2x and KM/VM4x, respectively) when exposed to moderate (75 mM) and high salt stress (150 mM). Both genotypes showed a decrease in their photosynthetic variables (Pn, gs, E, Fv/Fm, Fv′/Fm′, NPQ), and the decline was more significant in KM/VM2x plants as compared to KM/VM4x. The highest increase in the concentration of stress indicators (MDA and H2O2) was observed in leaves and roots of KM/VM2x at 75 and 150 mM of salt stress. The KM/VM4× showed the maximum increase in antioxidative enzymes (SOD, CAT, POD, APx, GR) and osmolytes (PRO, GB) in leaves and roots at 75 and 150 mM. Minerals (Cl ion, Na, K, P, N, Ca) accumulation was also significantly affected in leaves and roots of KM/VM2x and KM/VM4x under moderate and high NaCl stress. Overall, our results showed that Cl ion accumulation presents a robust correlation with stress indicators and their scavenging enzymes in leaves and roots. Moreover, 2x scion significantly mitigated by the 4x rootstock and showed more tolerance as compared to grafted on 2x rootstock.

  相似文献   

8.
Abstract While citrus rootstocks differ in capacity for sodium and chloride ion exclusion, citrus scion species also vary in foliar sensitivity to NaCl salinisation. Of two common scions, ‘Lisbon’ lemon appears more sensitive, whereas ‘Valencia’ orange in less sensitive to leaf salt. In an attempt to explain this difference. ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) and ‘Prior Lisbon’ lemon (Citrus limon [L.] Burm. F.) were budded to rootstocks known to differ in their ability to exclude sodium ions viz, the strong excluder Trifoliata (Poncirus trifoliata [L.] Raf.), and the weaker excluder Troyer citrange (C. sinensis×P. trifoliata); neither rootstock shows strong exclusion of chloride ions. Budded trees were held under a photosynthetic photon flux density of 450 μmol m 2 S 1 and watered with nutrient solution containing either 0 or 50 mol m 3 NaCl. Growth and photosynthetic responses were measured over 58 d following onset of salinization: salinity effects on leaf gas exchange were studied in relation to changes in leaf water status, compatible solutes and foliar content of sodium and chloride ions, over that same period. Once root-zone salinization began to influence leaf solutes (day 30 onwards), lemon showed a steeper increase in leaf chloride than occurred for orange. Although rootstock differences were without effect on this ingress of chloride ions for either scion, sodium ions were excluded from both scions to a larger extent by Trifoliata than by Troyer citrange. Carbon dioxide assimilation of scion foliage was reduced earlier and to a much larger extent by rootzone salinization in lemon than in orange. Furthermore, comparisons of CO2 assimilation in relation to leaf tissue solutes between scions (on either rootstock) showed stronger responses for both sodium and chloride ions in lemon than in orange. Faster ingress of chloride into lemon leaves was identified as the crucial factor which predisposed towards expression of that contrast between scions. Although contrasts between scions in photosynthetic responses to salinization matched a faster ingress of chloride into lemon than into orange leaves, the sharper photosynthetic response of ‘Prior Lisbon’ lemon to salinity was not solely attributable to higher concentrations of chloride ions (cell sap basis). A difference between species in subcellular compartmentation of the chloride ion under saline conditions was invoked.  相似文献   

9.
Citrus species are sensitive to an excess of boron (B). Currently, this toxicity is becoming a serious problem in the soils of arid and semi-arid environments throughout the world, where high concentrations of B may occur due to the agricultural use of wastewater. Citrus rootstocks can greatly influence the tolerance of citrus trees to different abiotic stresses. However, little is known about how the rootstock influences the tolerance of these trees to an excess of B. In this study, the effects of the nutrient solution’s B concentration (0.25, 2, 4.5 or 7?mg?l?1) on the growth and other physiological, nutritional and biochemical parameters of Verna lemon trees that were grafted on four contrasting rootstocks [Carrizo citrange (CC), Cleopatra mandarin (CL), Citrus macrophylla (CM) and sour orange (SO)] were investigated. The plants were grown in a greenhouse in pots containing a universal substrate media and were watered daily with a Hoagland nutrient solution containing different concentrations of B. The results showed that the plant growth was progressively inhibited with an increasing concentration of B in the nutrient solution. However, the shoot was more sensitive to the B toxicity than were the roots. In addition, the growth inhibition was reduced in trees that were grafted on CL and CM when compared with those that were grafted on CC and SO. The concentration of B in the leaves, stems and roots also increased with an increase in the concentration of external B in the following order: leaves?>?roots?>?stem. The rootstock also had an influence on the B concentration in the different plant tissues. In the leaves, the B concentration was lowest in the plants that were grafted on the SO rootstock followed by the plants that were grafted on either the CM or CL rootstock and highest in the plants that were grafted on the CC rootstock. The net assimilation of CO2 ( $ A_{{{\text{CO}}_{2} }} $ ) and the stomatal conductance (g s) leaf gas exchange parameters were reduced with an excess of B in the leaves, and this reduction was less pronounced for trees on CM and CL. The intercellular CO2 concentration (C i) and the chlorophyll fluorescence indicated that the reduction of $ A_{{{\text{CO}}_{2} }} $ that was found with an excess of B was mainly due to non-stomatal factors. The mineral nutrition and organic solute data are also shown in this study. All of the data indicate that the tolerance to an excess of B is not related to the concentration of B that has accumulated in the leaves, which indicates that a combination of rootstock-dependent physiological, biochemical and anatomical responses determine the tolerance to an excess of B in citrus plants.  相似文献   

10.
Summary Nucellar cell suspension protoplasts of navel orange (Citrus sinsensis Osb.) were chemically fused with mesophyll protoplasts of Troyer citrange (C. sinensis x Poncirus trifoliata) and cultured in hormone-free Murashige and Tucker medium containing 0.6 M sucrose. Two types of plant were regenerated through embryogenesis. One type showed intermediate mono-and difoliate leaves and the other types was identical to Troyer citrange. The regenerated plants with intermediate morphology were demonstrated by chromosome counts and rDNA analysis to be amphidiploid somatic hybrids. Five clones of these somatic hybrids were grafted in the field. After 4 years, they set flowers having a morphology intermediate between those of the two parents. The pollen grains showed high stainability and sufficient germinability, and were larger than those of Troyer citrange. The fruits of the somatic hybrids were large and spherical with thick rinds. Most of them contained seeds with normal germinability. These results indicate that somatic hybridization is a useful tool for Citrus breeding.  相似文献   

11.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

12.
Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks.Additionally, we studied the regulation of root NO3 uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3 and down-regulated by the N status and by NO3 itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status.The use of various metabolic uncouplers or inhibitors indicated that NO3 net uptake mediated by iHATS and LATS was an active transport system in both rootstocks.Key Words: Citrus, inducible high affinity transport system (iHATS), constitutive high affinity transport system (cHATS), nitrate uptake, regulation  相似文献   

13.
Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (−AM). From forty-five days after fungal inoculation onwards, half of +AM or −AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized −AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.  相似文献   

14.
Fe deficiency was imposed in Citrus sinensis L. cultivars Valencia and New Hall grafted on C. aurantium and Swingle citrumelo rootstocks by the absence of Fe (-Fe) or by the presence of bicarbonate in the Hoagland nutrient solution. In Fe-deprived leaves total and active Fe concentration, and peroxidase and catalase activities were decreased while the ratios carotenoids/chlorophylls, P/Fe, and K/Ca were increased. Fe(III) chelate reductase activity was induced in (-Fe)-treated roots whereas it was depressed in bicarbonate-treated roots.  相似文献   

15.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

16.
In citrus, damage produced by salinity is mostly due to toxic ion accumulation, since this salt-sensitive crop adjusts osmotically with high efficiency. In spite of this observation, the putative role of sugars as osmolites under salinity remains unknown. In this work, we have studied carbohydrate contents (total hexoses, sucrose and starch) in leaves and roots of citrus grown under increasing salinity. The experimental system was characterized through the analyses of several parameters known to be strongly affected by salinity in citrus, such as chloride accumulation, photosynthetic rate, ethylene production and leaf abscission. Three-year-old plants of the Clementina de Nules cultivar grafted on Carrizo citrange rootstock were watered with three different levels of salinity (NaCl was added to the watering solutions to achieve final concentrations of 30, 60 and 90 mM). Data indicate that salt stress caused an accumulation of chloride ions in a way proportional to the external increase in NaCl. The adverse conditions reduced CO2 assimilation, increased ethylene production and triggered abscission of the injured leaves. Data also show that salinity induced progressive depletions of carbohydrates in leaves and roots of citrus plants. This observation clearly indicates that sugar accumulation is not a main component of the osmotic adjustment machinery in citrus.  相似文献   

17.
Lipids in grape roots in relation to chloride transport   总被引:7,自引:3,他引:4       下载免费PDF全文
Kuiper PJ 《Plant physiology》1968,43(9):1367-1371
A comparison was made between the lipids of the roots of 5 grape rootstocks which differ markedly in the extent to which they permit chloride accumulation in leaves. Monogalactose diglyceride concentration was directly related to chloride accumulation in the leaves of the 5 rootstocks. Phosphatidylcholine and phosphatidylethanolamine were inversely related to chloride accumulation. The variety with the highest chloride accumulation contained an unusually small amount of sterols. A striking negative correlation between content of lignoceric acid and chloride accumulation was observed. The lignoceric acid concentration ranged from 11.9% in the rootstock with the lowest chloride accumulation to 0.8% in the rootstock with the highest chloride accumulation. This fatty acid was found mainly in the phosphatidylcholine and the phosphatidylethanolamine lipid fractions.  相似文献   

18.
Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake. Florida Agricultural Experimental Station Journal Series No. 7773.  相似文献   

19.
In this work, seedlings of two citrus rootstocks, the salt-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the salt-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. x Poncirus trifoliata [L.] Raf.) were used to study the relationship between chloride and water uptake. The results indicated that net chloride uptake rates in both genotypes were alike and decreased linearly with the time of salinity exposure, although they were more rapidly reduced in the tolerant genotype. In each rootstock, chloride uptake rates paralleled the decreases in transpiration rates. When transpiration was modified, concomitant changes in leaf Cl(-) concentrations were observed. There was a high positive correlation between total chloride content per plant and total water absorbed. In addition, the data indicate that the tolerant genotype "excluded" more chloride, i.e. it absorbed lower amounts of chloride per volume of water. Cleopatra also possessed a less efficient root system for water uptake and a higher shoot-to-root ratio. The results show that, overall, chloride absorption is linked to water use and that further tolerance in Cleopatra is mostly conferred by superior root resistance to Cl(-) uptake. Therefore, it is proposed that chloride absorption and, hence, salt tolerance in citrus depends to a great extent upon water use.  相似文献   

20.
To reveal specific Cl transport activities in the symplastic pathway, uptake, long‐distance transport and distribution of Cl have been investigated in the citrus rootstocks Carrizo citrange (CC, Cl includer) and Cleopatra mandarin (CM, Cl excluder). Using an external concentration of 4.5 mm Cl, both species actively transported Cl to levels that exceeded the critical requirement concentration by one and two orders of magnitude in the excluder and the includer rootstocks, respectively. Both CC and CM modulated Cl influx according to the availability of the nutrient as uptake capacity was induced by Cl starvation, but inhibited after Cl resupply. Net Cl uptake was higher in the includer CC, an observation that correlated with a lower root‐to‐shoot transport capacity in the excluder CM. The patterns of tissue Cl accumulation indicated that chloride exclusion in the salt‐tolerant rootstock CM was caused by a reduced net Cl loading into the root xylem. Genes CcCCC1, CcSLAH1 and CcICln1 putatively involved in the regulation of chloride transport were isolated and their expression analysed in response to both changes in the nutritional status of Cl and salt stress. The previously uncharacterized ICln gene exhibited a strong repression to Cl application in the excluder rootstock, suggesting a role in regulating Cl homeostasis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号