首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Alveolar echinococcosis is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical options for the treatment of echinococcosis are not satisfactory, and novel drugs and/or other potential means of therapy are needed. E. multilocularis metacestodes are characterized by almost potentially unlimited growth, and also display other features of cancerous tumours. In this study, we exposed metacestodes that were generated in vitro to 50–100 Gy ionizing irradiation, and subsequently investigated the short-term (10–12 days post-treatment) and long-term (14 weeks post-treatment) effects. We found, that in the short-term, no release of alkaline phosphatase (EmAP) activity as a measure for potentially induced damage and loss of viability could be detected, and that the protein expression pattern and protease activities in vesicle fluids and medium supernatants did not alter dramatically following irradiation. However, irradiation was associated with distinct morphological and ultrastructural alterations in the tissue of metacestodes, affecting most notably cell–cell contacts, mitochondrial shape, glycogen-storage cells and lipid droplet formation. These could be detected already at 10 days following treatment and remained as such also in the long-term. In addition, as determined after 14 weeks of culture, irradiation affected the proliferation and the growth of E. multilocularis metacestodes. Thus, we demonstrate that radiotherapy does not have a clear-cut parasitocidal effect, but can lead to metabolic impairment of E. multilocularis metacestodes, as reflected by the distinct morphological and structural alterations induced by irradiation treatment.  相似文献   

2.
3.
A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.  相似文献   

4.
The activities of the enzymes in Echinococcus multilocularis metacestodes involved in purine salvage were studied by HPLC. As in most parasites, this cestode relies entirely on salvage of preformed bases and nucleosides for its purine requirement. Therefore, these enzymes may be targets for drugs in the chemotherapeutic treatment of diseases caused by this parasite. The animals used in this study were gerbils (Meriones unguiculatus). Enzyme activities from sera and hepatic tissue in control and infected animals were similar with the exception of adenine phosphoribosyltransferase which showed an activity 4-fold greater in the serum from control than in serum from infected animals. In the parasite, adenine and hypoxanthine-guanine phosphoribosyltransferases and adenosine deaminase had the highest activities. Therefore, in E. multilocularis metacestodes, this pathway seems to be important for the parasite’s metabolism.  相似文献   

5.
2-Deoxy-D-glucose (2-DG) is a glucose analog used as a promising anticancer agent. It exerts its effects by inhibiting the glycolytic energy metabolism to deplete cells of energy. The larval stage of Echinococcus relies on glycolysis for energy production. Therefore, in this study, we investigated the in vitro and in vivo efficacy of 2-DG against the larval stage of Echinococcus granulosus and E. multilocularis. 2-DG exhibited significant time- and dose-dependent effects against in vitro cultured E. granulosus protoscoleces and E. multilocularis metacestodes. A daily oral administration of 500 mg/kg 2-DG in E. multilocularis-infected mice effectively reduced the weight of metacestodes. Notably, the combination treatment, either 2-DG (500 mg/kg/day) + albendazole (ABZ) (200 mg/kg/day) or 2-DG (500 mg/kg/day) + half-dose of ABZ (100 mg/kg/day), exhibited a potent therapeutic effect against E. multilocularis, significantly promoting the reduction of metacestodes weight compared with the administration of 2-DG or ABZ alone. Furthermore, the combination significantly promoted apoptosis of the cells of metacestodes and inhibited glycolysis in metacestodes, compared with the administration of 2-DG or ABZ alone. In conclusion, 2-DG exerts an effective activity against the larval stage of Echinococcus. Thus, it may be a promising anti-Echinococcus drug, and its combination with ABZ may provide a new strategy for the treatment of echinococcosis in humans.  相似文献   

6.
Wang Z  Wang X  Liu X 《EcoHealth》2008,5(2):115-126
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly significant infectious diseases occurring worldwide and caused by metacestodes of tapeworms Echinococcus granulosus and E. multilocularis, respectively. Both human CE and AE have highest prevalence rates in western and northwestern China. Livestock is the main intermediate host of E. granulosus, and wild small mammal are the main intermediate hosts of E. multilocularis. Since they range freely in pastoral areas, prey on wild small mammals and offal of livestock after slaughter, and have close relationships with humans, domestic dogs are the most important definitive host of both Echinococcus spp. with the highest risk of transmitting CE and AE to humans. Pastoralism is the occupation with the highest risk of being infected with the both kinds of echinococcosis due to the proximity of livestock, dogs, and wildlife host species. In this review, we summarize the epidemiology of human echinococcosis, the situation of parasite transmission in animal hosts, and possible transmission patterns in China. In addition, human activities and their potential influence on the transmission of echinococcosis are also discussed.  相似文献   

7.
The progressive growth of Echinococcus multilocularis metacestodes and their tissue infiltration will cause organ malfunction and finally failure. In few patients, E. multilocularis metacestode proliferation will spontaneously regress, but little is known about the determinants which may restrain metacestode survival and growth. In this study, chemokine responses were investigated in E. multilocularis patients at different states of infection, i.e. with progressive, stable and cured alveolar echinococcosis (AE). Characteristic chemokine profiles and changes in their production were observed in AE patients and infection-free controls when their peripheral blood cells were cultured with E. multilocularis antigens. The production of CC and CXC chemokines which associate with inflammation (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5 and GRO-α/CXCL1) was constitutively larger in AE patients than in controls; and the elevated chemokine releases were equal in patients with progressive, stable or cured AE. Cluster analyses identified three distinct chemokine response profiles; chemokines were enhanced, depressed or produced in similar quantities in AE patients and controls. A disparate cellular responsiveness was observed in AE patients to viable E. multilocularis vesicles; cluster 1 (GRO-α/CXCL1, MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2 chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were clearly diminished, while cluster 3 chemokines (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5) augmented. The increased production of inflammatory chemokines in patients even with cured AE could be induced by residual E. multilocularis metacestode lesions which continuously stimulate production of inflammatory chemokines. E. multilocularis metacestodes also suppressed cellular chemokine production in AE patients, and this may constitute an immune escape mechanism which reduces inflammatory host responses, prevents tissue destruction and organ damage, but may also facilitate parasite persistence.  相似文献   

8.
This study aimed to investigate the pharmacology and anti-parasitic efficacy of albendazole–chitosan microspheres (ABZ-CS-MPs) for established intraperitoneal infections of Echinococcus multilocularis metacestodes in an experimental murine model. Male outbred Kunming mice infected with E. multilocularis Metacestodes were administered with three ABZ formulations, namely, ABZ-CS-MPs, Liposome–Albendazole (L-ABZ), and albendazole tablet (ABZ-T). Each of the ABZ formulations was given orally at three different doses of 37.5, 75, and 150mg/kg, three times a week for 12 weeks postinfection. After administering the drugs, we monitored the pharmacological performance and anti-parasitic efficacy of ABZ-CS-MPs compared with L-ABZ, and ABZ-T treated mice. ABZ-CS-MPs reduced the weight of tissues containing E. multilocularis metacestodes most effectively compared with the ABZ-T group and untreated controls. Metacestode grown was Highly suppressed during treatment with ABZ-CS-MPs. Significantly higher plasma levels of ABZ metabolites were measured in mice treated with ABZ-CS-MPs or L-ABZ compared with ABZ-T. In particular, enhanced ABZ-sulfoxide concentration profiles were observed in the mice given 150mg/kg of ABZ-CS-MPs, but not in the mice treated with L-ABZ. Histological examination showed that damages caused disorganization of both the germinal and laminated layers of liver hyatid cysts, demolishing their characteristic structures after treatment with ABZ-CS-MPs or L-ABZ. Over time, ABZ-CS-MPs treatment induced a shift from Th2-dominant to Th1-dominant immune response. CS-MPs As a new carrier exhibited improved absorption and increased bioavailability of ABZ in the treatment of E. multilocularis infections in mice.  相似文献   

9.
We herein describe the establishment of single hepatic lesions of Echinococcus multilocularis in rats. A 3 mm incision was made on the liver with a surgical knife, and one small round vesicle of E. multilocularis (between 1 × 1 mm and <2 × 2 mm in diameter) was transplanted into the incision and covered with absorbable hemostat gauze. The presence and growth of the transplanted vesicle was monitored for 12 weeks using magnetic resonance imaging (MRI). Hepatic lesions, the metacestode of this parasite were confirmed in 12 of 17 infected rats (70.6%) by MRI and macroscopic examinations. The average size of the metacestodes with brood capsules at 12 weeks after the experimental transplantation of a single vesicle was 6.1 ± 2.5 mm × 4.4 ± 1.5 mm. The smallest size of the metacestodes detected by MRI was approximately 3 × 3 mm. This new approach of establishing single hepatic metacestodes of E. multilocularis in experimental animals is expected to be useful for analyzing the immune-pathological mechanisms of hepatic AE.  相似文献   

10.
A modified Segmental Sedimentation and Counting Technique (SSCT) to examine the presence of Echinococcus multilocularis helminths in segments of fox (Vulpes vulpes) intestine is described and compared to the “gold standard”, SCT. Out of the 358 intestines collected, 117 were E. multilocularis positive. Using SSCT methods we compare the sensitivity of individual or pairs of segments to establish a tradeoff between saving time and the reliability of the diagnosis, especially in areas with low infection intensities. The results show that the analysis of segment S4 associated with segment S1 or S2 give 98.3% sensitivity, with specificity close to 100%. Based on our results and the time saved, we recommend using SSCT for routine examination of fox intestines for large epidemiological studies, particularly where the endemic prevalence of E. multilocularis is low or unknown.  相似文献   

11.
The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.  相似文献   

12.
13.
The changes of biotransformation enzymes will substantially affect the host's ability to metabolize drugs and other xenobiotic compounds. In order to further elucidate this process and promote the development in treatment of echinococcosis, we investigated the effects of Echinococcus multilocularis infection and drug treatment on biotransformation enzymes in mouse liver. In microsomal and cytosolic fractions, from the six activities assayed, significant decrease of glutathione S-transferases (GST) activity and significant increase of 7-pentoxyresorufin (PROD) and NADPH-cytochrome P450 reductase (CPR) activity were observed in the mice infected with E. multilocularis metacestodes. In addition, after six weeks treatment of albendazole in E. multilocularis infected mice, significant decreased GST activity and significant increase of 7- ethoxyresorufin (EROD), PROD, and particularly 3-fold higher 7-methoxyresorufin (MROD) activity were observed. The 3-bromopyruvate treated mice only exhibited significantly lower GST activity. Our results demonstrate that E. multilocularis metacestodes infection can affect the activities of main hepatic biotransformation enzymes and such alterations of activity may further affect the hepatic biotransformation of xenobiotics. Moreover, albendazole and 3-bromopyruvate, the promising potential drug against Echinococcus, affected different hepatic biotransformation enzymes and may affect their metabolism. The findings will help to develop rational treatments with less side effects and promote the development of more efficient treatments against E. multilocularis.  相似文献   

14.
Alveolar echinococcosis (AE) is a severe hepatic disorder caused by larval infection by the fox tapeworm Echinococcus multilocularis. The course of parasitic development and host reactions are known to vary significantly among host species, and even among different inbred strains of mice. As reported previously, after oral administration of parasite eggs, DBA/2 (D2) mice showed a higher rate of cyst establishment and more advanced protoscolex development in the liver than C57BL/6 (B6) mice. These findings strongly suggest that the outcome of AE is affected by host genetic factor(s). In the present study, the genetic basis of such strain-specific differences in susceptibility/resistance to AE in murine models was studied by whole-genome scanning for quantitative trait loci (QTLs) using a backcross of (B6 × D2)F1 and D2 mice with varying susceptibility to E. multilocularis infection. For cyst establishment, genome linkage analysis identified one suggestive and one significant QTL on chromosomes (Chrs.) 9 and 6, respectively, whereas for protoscolex development, two suggestive and one highly significant QTLs were detected on Chrs. 6, 17 and 1, respectively. Our QTL analyses using murine AE models revealed that multiple genetic factors regulated host susceptibility/resistance to E. multilocularis infection. Moreover, our findings show that establishment of the parasite cysts in the liver is affected by QTLs that are distinct from those associated with the subsequent protoscolex development of the parasite, indicating that different host factors are involved in the host–parasite interplay at each developmental stage of the larval parasite. Further identification of responsible genes located on the identified QTLs could lead to the development of effective disease prevention and control strategies, including an intensive screening and clinical follow-up of genetically high-risk groups for AE infection.  相似文献   

15.
The aim of this study was to estimate the relevance of Echinococcus multilocularis coproantigen detection in fox faeces collected in the field to identify different levels of endemicity for Echinococcus multilocularis on a large scale (n×10 km2). Six study sites were selected in a high endemicity area and two study sites in a low endemicity area in eastern France on the basis of landscape composition. Sampling was undertaken in the winters of 1996–97, 1997–98 and 1998–99. At each site, (i) necropsy and intestine examination was undertaken on a sample of shot foxes (total number of foxes, 222), and (ii) fox faeces were collected in the field along road verges, and scored for degradation status (total number of faeces, 625). Fox faeces were also sampled in a control area (n=30) in western France in the summer of 1998. Intestines were examined according to the sedimentation method. Echinococcus multilocularis coproantigens were detected by using two ELISA tests: EM-ELISA and EmA9-ELISA. The necropsy prevalence in high and low endemicity areas was 63.3% and 19.4%, respectively, and the distribution of adult worms in the fox population was highly overdispersed (75.5% of the total biomass was harboured by 11.6% of foxes). Using the two ELISA tests, there was no difference in the detection of E. multilocularis coproantigens in field faeces, regardless of the degradation status. The medians of EM- and EmA9-ELISA OD values of field faeces in high endemicity area were significantly higher than in low endemicity area (P<0.001 for both ELISA). The distribution of EM-ELISA OD values in low endemicity area was significantly higher (P=0.002) than in the control area. Moreover, for the two ELISA, the observed ELISA OD value distributions in high endemicity area, low endemicity area and control area seemed representative of the distribution of adult worms in fox populations. These results indicate that E. multilocularis coproantigen detection in field faeces could serve for large-scale surveillance, as an alternative to necropsy.  相似文献   

16.
We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host–parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.  相似文献   

17.
We show that a conventionally purified glycoprotein component of Echinococcus multilocularis protoscolex, designated as Emgp-89, may be useful as a serodiagnostic antigen for detecting E. multilocularis infection in dogs domesticated in endemic areas. Emgp-89 was obtained from the parasite material by a simple procedure using Con A-agarose and subsequent gel filtration chromatography. The purified fraction showed a molecular weight of >4000 kDa upon gel filtration and reacted with a series of lectins that specifically bind to mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Subsequently, serodiagnostic performance of Emgp-89 was evaluated through enzyme-linked immunosorbent assays (ELISAs) by using sera from normal, domestic dogs and dogs infected with other helminths. Emgp-89 positively reacted with all 16 serum samples from E. multilocularis-infected dogs, thus showing that this antigen is highly sensitive. On the other hand, the specificity of Emgp-89-based ELISA, determined using 41 serum samples from dogs infected with other helminths, was relatively low (83%). As an attempt to improve the specificity of Emgp-89-based ELISA, we pretreated Emgp-89 with proteinase K or sodium periodate, expecting that these treatments would enable discrimination of true positives from false positives. The ELISA value increased after treatment with sodium periodate in most false-positive samples, whereas significant decreases were observed in sera from all dogs infected with E. multilocularis. Further evaluation of this antigen should be performed using sera from dogs infected with closely-related parasites, including taeniid cestodes, which are expected to prove that this serodiagnostic system is sufficiently specific for clinical and field applications.  相似文献   

18.

Background

Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody.

Methodology/Principal Findings

We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 µm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11.

Conclusions/Significance

Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.  相似文献   

19.
A cDNA library based on mRNA from adult worms of Echinococcus multilocularis was constructed. One cDNA clone, emY162, was isolated from this cDNA library. The putative protein from emY162 cDNA consists of 153 amino acids and has a predicted molecular weight of 17.0 kDa. The amino acid sequences of EMY162 are predicted to be a hydrophobic N-terminus conserving a secretory signal, and a hydrophobic C-terminus encoding a transmembrane domain or glycosyl-phosphatylinositol membrane anchor, and to have single fibronectin type III-like domain. In addition, it was shown that the emY162 gene (1738 bp) in the E. multilocularis genome DNA consists of three exons and two introns, and that emY162 is expressed in all four stages (protoscoleces, cultured metacestodes, immature adult worms and mature adult worms). Moreover, immunity to recombinant EMY162, which comprises the fibronectin type III-like domain on the EMY162 protein, was examined. Immune responses to the recombinant EMY162 were studied by using serum from dogs infected with E. multilocularis. Strong IgG immune responses were detected in Western blots.  相似文献   

20.
Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, has the potential to circulate in urban areas where wild host populations and humans coexist. The spatial and temporal distribution of infection in wild hosts locally affects the risk of transmission to humans. We investigated the spatial and temporal patterns of E. multilocularis infection in coyotes and rodent intermediate hosts within the city of Calgary, Canada, and the association between spatial variations in coyote infection and the relative composition of small mammal assemblages. Infection by E. multilocularis was examined in small mammals and coyote faeces collected monthly in five city parks from June 2012 to June 2013. Coyote faeces were analysed using a ZnCl2 centrifugation and sedimentation protocol. Infection in intermediate hosts was assessed through lethal trapping and post-mortem analysis. Parasite eggs and metacestodes were morphologically identified and molecularly confirmed through species-specific PCR assays. Of 982 small mammals captured, infection was detected in 2/305 (0.66%) deer mice (Peromyscus maniculatus), 2/267 (0.75%) meadow voles (Microtus pennsylvanicus), and 1/71 (1.41%) southern red backed voles (Myodes gapperi). Overall faecal prevalence in coyotes was 21.42% (n = 385) and varied across sites, ranging from 5.34% to 61.48%. Differences in coyote faecal prevalence across sites were consistent with local variations in the relative abundance of intermediate hosts within the small mammal assemblages. Infections peaked in intermediate hosts during autumn (0.68%) and winter (3.33%), and in coyotes during spring (43.47%). Peaks of infections in coyote faeces up to 83.8% in autumn were detected in a hyper-endemic area. To the best of our knowledge, our findings represent the first evidence of a sylvatic life-cycle of E. multilocularis in a North American urban setting, and provide new insights into the complexity of the parasite transmission ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号